The design and development of highly permeable,selective and stable polymer membranes are great challenges in the gas separation industry.Herein,we constructed two intrinsic microporous polyimides(6FPCA and 6FMCA)deri...The design and development of highly permeable,selective and stable polymer membranes are great challenges in the gas separation industry.Herein,we constructed two intrinsic microporous polyimides(6FPCA and 6FMCA)derived from two isometric diamines(PCA and MCA),which were synthesized by palladium catalyzed C—N coupling reaction.The PCA and MCA diamines contain a hollow beaded structure of 2,2′-paracyclophane as a building block with a specified window size of 3.09Å.The chemical structures of monomers,polyimides were confirmed by NMR,FTIR,and elementary analysis.6FPCA and 6FMCA exhibit good solubility,excellent thermal stability,and mechanical properties.6FPCA exhibits much larger microporosity(434 versus 120 m2·g−1),FFV(0.22 versus 0.15),d-spacing(6.9 versus 5.9Å),and over 10 times higher permeability with a very little decrease in selectivity than the corresponding polyimide(6FpA)with a plane structure,which remarkably increased their separation performance from far below the 2008 Robeson Upper bounds to reach these limitations for O2/N2 and CO2/CH4.Additionally,the 6FPCA also demonstrates good plasticization resistance,moderate aging properties,and high CO2/CH4 mixed-gas separation performance.These results indicate that paracyclophane subunit can be successfully incorporated into polymers to enhance their ultra-microporosity and separation properties,which open a new avenue for developing high performance gas separation membranes with topological ultra-micropores.展开更多
The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of...The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of the gas permeabilities coefficient of PANI with an insulator to metal transition upon the protonation processes was observed, which might be due to a change in both gas solubility coefficient and diffusion coefficient with the protonation state.展开更多
By means of a vacuum time-lag method, gas transport properties of a polyimide based on 2,2-bis(3,4-decarboxyphenyl) hexafluoropropane dianhydride (6FDA) and meta-phenylenediamine (mPDA) have been measured as a functio...By means of a vacuum time-lag method, gas transport properties of a polyimide based on 2,2-bis(3,4-decarboxyphenyl) hexafluoropropane dianhydride (6FDA) and meta-phenylenediamine (mPDA) have been measured as a function of upstream pressure and temperature. The results show that no gas-induced plasticization occurs for this polyimide in the upstream pressure range from 1 atm to 20 atm. The temperature dependence of P and D can be described by the Arrhenius equations. The activation energies of permeation and diffusion were obtained for the gas/polymer pair studied and correlated with the size of penetrant gas.展开更多
Poly(4-methyl-1-pentene)hollow fiber membranes(PMP HFMs)are commonly used in gas separation membrane and artificial lung membrane in extracorporeal membrane oxygenation(ECMO),and its porous structure and mechanical pr...Poly(4-methyl-1-pentene)hollow fiber membranes(PMP HFMs)are commonly used in gas separation membrane and artificial lung membrane in extracorporeal membrane oxygenation(ECMO),and its porous structure and mechanical properties have a significant impact on the performance of the membrane material.In our work,PMP HFMs were prepared by thermally induced phase separation method.Subsequently,through characterization analysis of powder X-ray diffraction,universal tensile machine,scanning electron microscope and other instruments,the effects of PMP concentration,diluent ratio,quenching temperature,air gap distance and winding speed on the membrane performance were systematically investigated to obtain optimal preparation conditions for PMP HFMs.The results showed that the PMP HFMs prepared under optimal conditions possessed good gas permeability with a nitrogen flux of 10.5 ml·MPa^(-1)·cm^(-2)·min^(-1),a surface dense layer,and a good tensile strength of 9.33 MPa.We believed that this work could provide useful references for the application of PMP membranes in the medical field.展开更多
In this work, poly(amide acid) solution, the precursor of polyimide, was synthesized by the reaction of 4,4′-(hexafluoroisopropylidene)diphthalicanhydride and 2,2-bis[4-(4-aminophenoxy)phenyl]-hexafluoropropanane in ...In this work, poly(amide acid) solution, the precursor of polyimide, was synthesized by the reaction of 4,4′-(hexafluoroisopropylidene)diphthalicanhydride and 2,2-bis[4-(4-aminophenoxy)phenyl]-hexafluoropropanane in the solvent of N-methyl-2-pyrrolidone(NMP) and tetrahydrofuran(THF). Then, hollow fiber membranes for high flux gas separation were prepared by dry-jet wet spinning using the precursor solution of poly(amide acid) as the spinning dope and a subsequent imidization process. Silicone rubber was further coated outside the obtained hollow fiber membranes to repair the defects on the denser layer. The effects of internal, external coagulation bath ratios with air gap, and coating solution concentrations on the morphologies, structures, and separation performance of the membranes were studied. Results showed that the sponge-like support layer was formed when the content of NMP was increased from 50% to 90% in the internal coagulation bath. The outer surface of the membrane became denser when the water content in the external coagulation bath increased from 40% to 100%, and the separation coefficient of CO2/CH4 increased by 2 times. This value could reach up to 1.4 when the air gap was 6 cm. With tuning the mass fraction of silicone rubber as 5%, hollow fiber composite membranes with uniform coating layer and an improved separation coefficient of 5.4 could be obtained.展开更多
Some novel polyimides containing bisthiazole rings were prepared by reacting 2,2'-diamino-4, 4'-bisthiazole (DART) with different aromatic dianhydride. The polyimides obtained had inherent viscosities of 0.37-...Some novel polyimides containing bisthiazole rings were prepared by reacting 2,2'-diamino-4, 4'-bisthiazole (DART) with different aromatic dianhydride. The polyimides obtained had inherent viscosities of 0.37-0.82 dl/g. Thermogravimetric analysis of the polyimides showed good thermal stability, the temperature at 5% weight loss being from 450 degrees to 560 degrees C. The permeability of two polymer membranes to H-2, O-2 and N-2 was determined, respectively. Three kinds of polyimide films were converted into electrical conductor by pyrolysis at high temperature in nitrogen atmosphere. The maximum room temperature conductivity as high as 3.9x10(2) S/cm for PI him pyrolyzed at 1200 degrees C for 10 min was obtained, and it was very stable in air.展开更多
SAPO-34 nanocrystals(inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO_2, CH_4,and N_2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membr...SAPO-34 nanocrystals(inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO_2, CH_4,and N_2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membranes(MMMs) were characterized via SEM, AFM, TGA, XRD and FTIR analyses. Gas permeation properties of PU-SAPO-34 MMMs with SAPO-34 contents of 5 wt%, 10 wt% and 20 wt% were investigated. The permeation results revealed that the presence of 20 wt% SAPO-34 resulted in 4.45%, 18.24% and 40.2% reductions in permeability of CO_2,CH_4,and N_2, respectively, as compared to the permeability of neat polyurethane membrane. Also,the findings showed that at the pressure of 1.2 MPa, the incorporation of 20 wt% SAPO-34 into the polyurethane membranes enhanced the selectivity of CO_2/CH_4 and CO_2/N_2, 14.43 and 37.46%, respectively. In this research, PU containing 20 wt% SAPO-34 showed the best separation performance. For the first time, polynomial regression(PR) as a simple yet accurate tool yielded a mathematical equation for the prediction of permeabilities with high accuracy(R^2>99%).展开更多
Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pre...Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pressure manometric method. The correlation between the gas transport behavior and molecular structure of aromatic polyester membrane is discussed. These data are interpreted qualitatively in terms of the calculated packing density, gas-polymer interaction, concentration of aryl bromine on backbone, and effect of silane group on main chain of polymer.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 22078245 and 21861016)YLU-DNL Fund (No. 2022009)
文摘The design and development of highly permeable,selective and stable polymer membranes are great challenges in the gas separation industry.Herein,we constructed two intrinsic microporous polyimides(6FPCA and 6FMCA)derived from two isometric diamines(PCA and MCA),which were synthesized by palladium catalyzed C—N coupling reaction.The PCA and MCA diamines contain a hollow beaded structure of 2,2′-paracyclophane as a building block with a specified window size of 3.09Å.The chemical structures of monomers,polyimides were confirmed by NMR,FTIR,and elementary analysis.6FPCA and 6FMCA exhibit good solubility,excellent thermal stability,and mechanical properties.6FPCA exhibits much larger microporosity(434 versus 120 m2·g−1),FFV(0.22 versus 0.15),d-spacing(6.9 versus 5.9Å),and over 10 times higher permeability with a very little decrease in selectivity than the corresponding polyimide(6FpA)with a plane structure,which remarkably increased their separation performance from far below the 2008 Robeson Upper bounds to reach these limitations for O2/N2 and CO2/CH4.Additionally,the 6FPCA also demonstrates good plasticization resistance,moderate aging properties,and high CO2/CH4 mixed-gas separation performance.These results indicate that paracyclophane subunit can be successfully incorporated into polymers to enhance their ultra-microporosity and separation properties,which open a new avenue for developing high performance gas separation membranes with topological ultra-micropores.
文摘The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of the gas permeabilities coefficient of PANI with an insulator to metal transition upon the protonation processes was observed, which might be due to a change in both gas solubility coefficient and diffusion coefficient with the protonation state.
文摘By means of a vacuum time-lag method, gas transport properties of a polyimide based on 2,2-bis(3,4-decarboxyphenyl) hexafluoropropane dianhydride (6FDA) and meta-phenylenediamine (mPDA) have been measured as a function of upstream pressure and temperature. The results show that no gas-induced plasticization occurs for this polyimide in the upstream pressure range from 1 atm to 20 atm. The temperature dependence of P and D can be described by the Arrhenius equations. The activation energies of permeation and diffusion were obtained for the gas/polymer pair studied and correlated with the size of penetrant gas.
基金support of thiswork by Science Fund of State Key Laboratory of Tribology,Tsinghua University(61012205321).
文摘Poly(4-methyl-1-pentene)hollow fiber membranes(PMP HFMs)are commonly used in gas separation membrane and artificial lung membrane in extracorporeal membrane oxygenation(ECMO),and its porous structure and mechanical properties have a significant impact on the performance of the membrane material.In our work,PMP HFMs were prepared by thermally induced phase separation method.Subsequently,through characterization analysis of powder X-ray diffraction,universal tensile machine,scanning electron microscope and other instruments,the effects of PMP concentration,diluent ratio,quenching temperature,air gap distance and winding speed on the membrane performance were systematically investigated to obtain optimal preparation conditions for PMP HFMs.The results showed that the PMP HFMs prepared under optimal conditions possessed good gas permeability with a nitrogen flux of 10.5 ml·MPa^(-1)·cm^(-2)·min^(-1),a surface dense layer,and a good tensile strength of 9.33 MPa.We believed that this work could provide useful references for the application of PMP membranes in the medical field.
基金financially supported by the National Natural Science Foundation of China (No. 21774019)Program of Shanghai Academic Research Leader (No. 18XD1400100)+3 种基金Natural Science Foundation of Shanghai (No. 18ZR1400600)Fundamental Research Funds for the Central Universities (No. 2232017A-01)Shanghai Science and Technology Commission "Yangfan" Program (No. 17YF1400500)Shanghai Science and Technology Innovation Action Plan (No. 16JC1403600)
文摘In this work, poly(amide acid) solution, the precursor of polyimide, was synthesized by the reaction of 4,4′-(hexafluoroisopropylidene)diphthalicanhydride and 2,2-bis[4-(4-aminophenoxy)phenyl]-hexafluoropropanane in the solvent of N-methyl-2-pyrrolidone(NMP) and tetrahydrofuran(THF). Then, hollow fiber membranes for high flux gas separation were prepared by dry-jet wet spinning using the precursor solution of poly(amide acid) as the spinning dope and a subsequent imidization process. Silicone rubber was further coated outside the obtained hollow fiber membranes to repair the defects on the denser layer. The effects of internal, external coagulation bath ratios with air gap, and coating solution concentrations on the morphologies, structures, and separation performance of the membranes were studied. Results showed that the sponge-like support layer was formed when the content of NMP was increased from 50% to 90% in the internal coagulation bath. The outer surface of the membrane became denser when the water content in the external coagulation bath increased from 40% to 100%, and the separation coefficient of CO2/CH4 increased by 2 times. This value could reach up to 1.4 when the air gap was 6 cm. With tuning the mass fraction of silicone rubber as 5%, hollow fiber composite membranes with uniform coating layer and an improved separation coefficient of 5.4 could be obtained.
基金This project was supported by the National Natural Science Foundation of China
文摘Some novel polyimides containing bisthiazole rings were prepared by reacting 2,2'-diamino-4, 4'-bisthiazole (DART) with different aromatic dianhydride. The polyimides obtained had inherent viscosities of 0.37-0.82 dl/g. Thermogravimetric analysis of the polyimides showed good thermal stability, the temperature at 5% weight loss being from 450 degrees to 560 degrees C. The permeability of two polymer membranes to H-2, O-2 and N-2 was determined, respectively. Three kinds of polyimide films were converted into electrical conductor by pyrolysis at high temperature in nitrogen atmosphere. The maximum room temperature conductivity as high as 3.9x10(2) S/cm for PI him pyrolyzed at 1200 degrees C for 10 min was obtained, and it was very stable in air.
基金Supported by the University of Kashan and the nano-organization(1393/1752)
文摘SAPO-34 nanocrystals(inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO_2, CH_4,and N_2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membranes(MMMs) were characterized via SEM, AFM, TGA, XRD and FTIR analyses. Gas permeation properties of PU-SAPO-34 MMMs with SAPO-34 contents of 5 wt%, 10 wt% and 20 wt% were investigated. The permeation results revealed that the presence of 20 wt% SAPO-34 resulted in 4.45%, 18.24% and 40.2% reductions in permeability of CO_2,CH_4,and N_2, respectively, as compared to the permeability of neat polyurethane membrane. Also,the findings showed that at the pressure of 1.2 MPa, the incorporation of 20 wt% SAPO-34 into the polyurethane membranes enhanced the selectivity of CO_2/CH_4 and CO_2/N_2, 14.43 and 37.46%, respectively. In this research, PU containing 20 wt% SAPO-34 showed the best separation performance. For the first time, polynomial regression(PR) as a simple yet accurate tool yielded a mathematical equation for the prediction of permeabilities with high accuracy(R^2>99%).
文摘Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pressure manometric method. The correlation between the gas transport behavior and molecular structure of aromatic polyester membrane is discussed. These data are interpreted qualitatively in terms of the calculated packing density, gas-polymer interaction, concentration of aryl bromine on backbone, and effect of silane group on main chain of polymer.