期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Mechanical Property Evaluation of Glass-carbon-durian Skin Fiber Reinforced Polylactic Acid Composites
1
作者 Boonsin Nadondu Prayoon Surin Jakawat Deeying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期244-247,共4页
The main objective of this work was to study and develop composite materials by experiments with mixtures of synthetic(glass fiber, carbon fiber) and natural fiber(durian skin fiber) reinforcements on a polylactic aci... The main objective of this work was to study and develop composite materials by experiments with mixtures of synthetic(glass fiber, carbon fiber) and natural fiber(durian skin fiber) reinforcements on a polylactic acid(PLA) matrix composite, because of its excellent mechanical properties. Durian skin fiber(DSF) is a natural waste throughout Thailand, and an alternative to recycling is to realize its potential as a new reinforcement through mixing and the injection molding processes. The flexural strength(σ_(F)) and flexural modulus(E_(F)) of the composites from specimens showed a maximum value by content of durian skin fiber at 10 wt%, for good performance relative to particle dispersion between the matrix and the fiber, and showed a minimum value by content of durian skin fiber at 20 wt%, because the reinforcement material affects the mechanical properties in the experiments. 展开更多
关键词 glass fiber carbon fiber durian skin fiber polylactic acid mechanical properties
下载PDF
3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction
2
作者 Xingyu Gui Zhiyu Peng +13 位作者 Ping Song Li Chen Xiujuan Xu Hairui Li Pei Tang Yixi Wang Zixuan Su Qingquan Kong Zhenyu Zhang Zhengyong Li Ying Cen Changchun Zhou Yujiang Fan Xingdong Zhang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期451-463,共13页
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional... At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction. 展开更多
关键词 MICROTIA 3D printing polylactic acid(PLA)polymer scaffolds Gelatin methacrylamide Cartilage reconstruction
下载PDF
Preparation and Performance of Pueraria lobata Root Powder/Polylactic Acid Composite Films
3
作者 Shuang Zhao Shenglan Chen +6 位作者 Shuan Ren Gang Li Ke Song Jie Guo Shima Liu Jian He Xianwu Zhou 《Journal of Renewable Materials》 SCIE EI 2023年第6期2531-2553,共23页
Petroleum-based materials,such as plastic,are characterized by adverse environmental pollution;as a result,researchers have sought alternative degradable plastics that are environmentally friendly,such as polylactic a... Petroleum-based materials,such as plastic,are characterized by adverse environmental pollution;as a result,researchers have sought alternative degradable plastics that are environmentally friendly,such as polylactic acid(PLA).PLA has shown great potential to replace petroleum-based plastics.In this study,seven different samples of unmodified Pueraria lobata root powder(PRP)with different contents(i.e.,0,5,10,15,20,25,and 30 wt%)and three different modified PRPs(i.e.,treated with NaOH,NaOH-KH-550,and Formic)were used to reinforce polylactic acid(PLA)via solution casting process.These prepared PRP/PLA composite films were characterized using SEM,FTIR,UV-visible spectra analysis,TG,DSC,weight loss measurement(wt%),and mechanical measurements.The results showed that the PRP modified with KH-550(PRPK)intensified the interaction in the interface region between the PRP and the PLA matrix,thus increasing the tensile strength(54.5 MPa),elongation at break(2.8%),and Young’s modulus(3310 MPa)of the PRPK/PLA biofilms.Contact angle measurement showed that the PRP treatments contributed to the hydrophobicity of films.The transparency of PRP-10/PLA film atλ_(800)was 11.09%,and its UVA and UVB transmittance were 3.28 and 1.16,respectively.After blending PLA with PRP,the PRP/PLA composite films exhibited excellent biodegradability.In summary,PRPK improved the mechanical properties of PLA and prevented the films from ultraviolet light,suggesting that PRPK-5/PLA film could be used as packaging materials. 展开更多
关键词 Pueraria lobata root powder polylactic acid biocomposite films PROPERTIES
下载PDF
Properties enhancement of antimicrobial chitosan-deposited polylactic acid films via cold plasma treatment
4
作者 Gui-Yun Chen Tong-Liang Yang +2 位作者 Yu-He Wang Shu-Hong Li Ye Chen 《Food and Health》 2023年第3期1-8,共8页
The present study aimed to understand the effect of dielectric barrier discharge cold plasma(DBD-CP)technology on the antimicrobial chitosan deposition and the properties enhancement of polylactic acid(PLA)films.The r... The present study aimed to understand the effect of dielectric barrier discharge cold plasma(DBD-CP)technology on the antimicrobial chitosan deposition and the properties enhancement of polylactic acid(PLA)films.The results indicated that DBD-CP was an effective method for improving the adhesion and surface hydrophilicity of PLA,facilitating the deposition of chitosan coating.This modification was attributed to the increased surface roughness,as well as the presence of polar functional groups observed through atomic force microscopy,surface free energy and Fourier transform infrared spectroscopy analysis.The study further revealed that both water resistance and mechanical properties were significantly improved after DBD-CP treatment,which was positively correlated with the amount of chitosan deposited on the PLA surfaces.Following comprehensive evaluation,the treatment at 75 W was determined as the optimal condition for enhancing the properties.Additionally,the modified film exhibited strong antimicrobial activity against Staphylococcus aureus.Consequently,the DBD-CP technology could be a promising tool for better utilization of PLA-based materials in the antibacterial food packaging industry. 展开更多
关键词 dielectric barrier discharge cold plasma polylactic acid CHITOSAN antimicrobial packaging
下载PDF
Biodegradation and Mechanical Property of Polylactic Acid/Thermoplastic Starch Blends with Poly (ethylene glycol) 被引量:6
5
作者 薛平 WANG Kejian +1 位作者 贾明印 YANG Meijuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期157-162,共6页
The effects of adding poly (ethylene glycol) (PEG) into polylactic acid/thermoplastic starch blends (PLA/TPS) on the properties were investigated by DSC, SEM and mechanical property-testing. The blends of PLA/TP... The effects of adding poly (ethylene glycol) (PEG) into polylactic acid/thermoplastic starch blends (PLA/TPS) on the properties were investigated by DSC, SEM and mechanical property-testing. The blends of PLA/TPS blended with increasing content PEG exhibited lower temperature of glass transition (T) and lower temperature of melting (T) as well as higher melt flow index (MFI), which indicates the plasticization and proeessability of the composites were dramatically improved. The tensile strength, flexural strength and izod impact strength of PLA/TPS (80/20) increased at first and then decreased with increasing content of PEG due to stronger interfacial adhesion. The optimized mechanical property can be obtained for the blend with 3 wt % PEG. The samples containing PEG after soil burial for 5 months showed quicker degradation being accompanied with large weight loss and mechanical properties loss. 展开更多
关键词 BIODEGRADATION mechanical property polylactic acid STARCH
下载PDF
Effect of Starch/Polylactic Acid Ratio on the Interdependence of Two-Phase and the Properties of Composites 被引量:3
6
作者 左迎峰 GU Jiyou +3 位作者 CAO Jun WEI Shuangying TAN Haiyan 张彦华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期1108-1114,共7页
Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other... Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other properties of the composites were studied. The combination of results of TGA with SEM indicated that the interdependence between starch and PLA was increased gradually as the starch/PLA ratio reduced. DSC results showed that the glass transition temperature(Tg), melting temperature(Tm) and degree of crystallinity of PLA in composites were increased gradually, whereas the cold crystallization temperature(Tc) was gradually decreased as the starch/PLA ratio reduced. The rheological properties of composites were closely related with the interdependence of two-phase, with reducing starch/PLA proportion, the interdependence was increased, and then the strain for storage modulus was firstl reduced and then gradually increased. Frequency scanning showed that the storage modulus and complex viscosity were decreased with reducing starch content. As the starch/PLA ratio reduced, the matrix phase PLA was increased, so that the strength of composites was increased gradually, whereas water absorption rate was decreased gradually. 展开更多
关键词 corn starch polylactic acid mixing ratio interdependence of two-phase PROPERTIES
下载PDF
Release performance and sustained-release efficacy of emamectin benzoate-loaded polylactic acid microspheres 被引量:3
7
作者 YIN Ming-ming ZHU Xin-yan CHEN Fu-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期640-647,共8页
High-performance liquid chromatography (HPLC) was employed to determine drug release rates based on emamectin benzoate concentrations in the medium. Release kinetics equations were used to fit the drug release behav... High-performance liquid chromatography (HPLC) was employed to determine drug release rates based on emamectin benzoate concentrations in the medium. Release kinetics equations were used to fit the drug release behavior. The effects of particle size and release medium pH on the release rate were also investigated. The indoor toxicity of emamectin benzoate-loaded polylactic acid microspheres on the diamondback moth larva (Plutella xylostella) was studied to explore drug sustained-release performance. In acidic and neutral media, the drug release behavior of the microspheres was in accord with the first-order kinetics equation. Increasing the spray dosage of emamectin benzoate-loaded polylactic acid microspheres initially resulted in an equivalent insecticidal efficacy with the conventional emamectin benzoate microemulsion. However, the drug persistence period was four-fold longer than that observed using the conventional formulation. The developed emamectin benzoate-loaded polylactic acid microspheres showed dramatic sustained-release performance. A treatment threshold of greater than 35 mg mL-1 was established for an efficient accumulated release concentration of emamectin benzoate-loaded microspheres. 展开更多
关键词 emamectin benzoate polylactic acid microspheres release performance kinetics equation sustained-release efficacy
下载PDF
Mechanical and Thermal Properties of Apocynum and Ramie Fiber Mat Reinforced Polylactic Acid Composites 被引量:3
8
作者 蔡新娟 梅小雪 +1 位作者 关海成 姚澜 《Journal of Donghua University(English Edition)》 CAS 2021年第2期99-105,共7页
With the increasing awareness of environmental protection and rational utilization of resources,natural fiber reinforced composites have shown broad development prospects.Apocynum fiber,known as the“king of wild fibe... With the increasing awareness of environmental protection and rational utilization of resources,natural fiber reinforced composites have shown broad development prospects.Apocynum fiber,known as the“king of wild fiber”,not only has moisture absorption,air permeability,and good mechanical properties but also has many health-related advantages such as antibacterial properties.In this study,four types of needle-punched Apocynum fiber and ramie fiber mat reinforced polylactic acid(PLA)composites were fabricated.Mechanical and thermal properties of the composites were tested and analyzed.The results showed that compared with those of the ramie fiber finish needle-punched mat reinforced composites,the tensile strength and the tensile modulus of Apocynum fiber finish needle-punched mat reinforced composites had increased by 15.3%and 60.1%,respectively.In comparison,the bending strength and the bending modulus were decreased by 21.8%and 7.6%,respectively.Moreover,compared with the Apocynum fiber finish needled-punched mat reinforced composites and the ramie fiber finish needle-punched mat reinforced composites,the Apocynum 50/ramie 50 finish needle-punched mat reinforced composites had the best tensile and bending properties.The after-fracture morphology was detected by a scanning electron microscope(SEM).The thermal properties of the composites were also characterized.It was found that the thermal properties of the four types of composites showed very similar behaviors. 展开更多
关键词 Apocynum fiber ramie fiber polylactic acid(PLA) composite mechanical property thermal property
下载PDF
3D Printing of Polylactic Acid Bioplastic–Carbon Fibres and Twisted Kevlar Composites Through Coextrusion Using Fused Deposition Modeling 被引量:2
9
作者 J.Y.Tey W.H.Yeo +1 位作者 Y.J.King W.O.Ding 《Journal of Renewable Materials》 SCIE EI 2020年第12期1671-1680,共10页
Polylactic acid(PLA)bioplastic is a common material used in Fused Deposition Modeling(FDM)3D printing.It is biodegradable and environmentally friendly biopolymer which made out of corn.However,it exhibits weak mechan... Polylactic acid(PLA)bioplastic is a common material used in Fused Deposition Modeling(FDM)3D printing.It is biodegradable and environmentally friendly biopolymer which made out of corn.However,it exhibits weak mechanical properties which reduced its usability as a functional prototype in a real-world application.In the present study,two PLA composites are created through coextruded with 3K carbon fibres and twisted Kevlar string(as core fibre)to form a fibre reinforced parts(FRP).The mechanical strength of printed parts was examined using ASTM D638 standard with a strain rate of 1 mm/min.It has been demonstrated that the FRPs coextruded with 3K carbon fibres had achieved significant improvement in Young’s modulus(+180.6%,9.205 GPa),ultimate tensile strength(+175.3%,103 MPa)and maximum tensile strain(+21.6%,1.833%).Although the Young’s modulus of Kevlar FRP was found to be similar to as compared to unreinforced PLA(~3.29 GPa),it has gained significant increment in terms of maximum tensile strain(+179.7%,104.64 MPa),and maximum tensile strain(+257%,5.384%).Thus,this study revealed two unique composite materials,in which the 3K carbon FRP can offer stiff and high strength structure while Kevlar FRP offers similar strength but at a higher elasticity. 展开更多
关键词 3D printing Kevlar fibre 3K carbon fibre coextruded reinforced plastic polylactic acid bioplastic
下载PDF
Effects of Selected Printing Parameters on the Fire Properties of 3D-Printed Neat Polylactic Acid(PLA)and Wood/PLA Composites 被引量:1
10
作者 Nataša Knez Mirko Kariž +2 位作者 Friderik Knez Nadir Ayrilmis Manja Kitek Kuzman 《Journal of Renewable Materials》 SCIE EI 2021年第11期1883-1895,共13页
The effects of selected printing parameters on the fire properties of additively produced composites from neat polylactic acid(PLA)and wood/PLA filaments were investigated.The reaction to fire of the 3D-printed specim... The effects of selected printing parameters on the fire properties of additively produced composites from neat polylactic acid(PLA)and wood/PLA filaments were investigated.The reaction to fire of the 3D-printed specimens was tested according to the ISO 5660-1 cone calorimeter test method.The results showed that the properties of the specimens when exposed to fire were significantly affected by the incorporation of wood flour into the PLA filament.It was also interesting that PLA specimens had much better reactions to fire than the wood/PLA specimens.Time to ignition was found to be much longer in the 3D-printed PLA specimens.Although the maximal heat release rate was a little higher in the PLA than the wood/PLA specimens,the duration of HRR was longer for the wood/PLA specimens.The initial mass of the specimens was smaller in the wood/PLA composites,but during the radiant heat exposure the mass typically decreased slower than in the PLA specimens. 展开更多
关键词 Reaction to fire WOOD polylactic acid(PLA) FILAMENT 3D printer BIOCOMPOSITE
下载PDF
Polylactic Acid Nanoparticles Targeted to Brain Microvascular Endothelial Cells 被引量:1
11
作者 王华芳 胡豫 +1 位作者 孙望强 谢长生 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2005年第6期642-644,共3页
In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular ... In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular endothelial cells (BMECs) targeting was examined by in vivo experiments and fluorescence microscopy. The results showed that PLA nanoparticles are less toxic than PACA nanoparticles but their BMECs targeting is similar to PACA nanoparticles. The experiments suggest that drugs can he loaded onto the particles and become more stable through adsorption on the surface of PLA nanoparticles with high surface activity. The surface of PLA nanoparticles was obviously modified and the hydrophilicity was increased as well in the presence of non-ionic surfactants on PLA nanoparticles. As a targeting moiety, polysobate 80 (T-80) can facilitate BMECs targeting of PLA nanoparticles. 展开更多
关键词 polylactic acid nanoparticles polysorbate brain microvascular endothelial cells TARGETING
下载PDF
The UV Aging Properties of Maleic Anhydride Esterified Starch/Polylactic Acid Composites 被引量:3
12
作者 左迎峰 吴义强 +1 位作者 GU Jiyou ZHANG Yanhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期971-977,共7页
Esterified starch/polylactic acid(ES/PLA) blending composite was prepared by melting extrusion with maleic anhydride esterified starch and PLA as the raw materials. The composite was accelerated aging by using UV ag... Esterified starch/polylactic acid(ES/PLA) blending composite was prepared by melting extrusion with maleic anhydride esterified starch and PLA as the raw materials. The composite was accelerated aging by using UV aging box, and its properties were characterized by Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM), X-ray diffraction(XRD), thermo gravimetric analysis(TGA) and mechanical testing machine. FT-IR and SEM results show that the infrared absorption peak intensities of C-O, C-H, and C=O in aged samples decrease gradually with increasing aging time. The damage degree of surface and internal of aged samples increases gradually. XRD analysis results show that after aging treatment, the crystalline diffraction peak of thermoplastic esterified starch at 2θ = 21° disappears and the diffraction peaks of PLA at 2θ = 16.5° appear, indicating that the hydrolysis rate of esterified starch is greater than that of PLA. The crystallinity of PLA in aged sample shows an increasing trend at first followed by a decreasing one along with the increasing time of aging treatment, suggesting that the hydrolysis of amorphous regions of PLA is more preferential than its crystalline regions. Because of the influence of crystal structure and the change of composition structure, the initial decomposition temperature of aging test specimen gradually increases with the extension of aging time. The maximum decomposition rate temperature and residual mass increases at first, and then decrease after the aging time extending to 1600 h. As the aging time increases, the damage degree of combination interface between esterification starch and PLA is exacerbated, resulting in the tensile strength and bending strength of aged specimen decreasing gradually. 展开更多
关键词 esterified starch maleic anhydride polylactic acid UV aging
下载PDF
Battle against Aging and Folds: Benefit and Risks of the Semi-Permanent Fillers Polylactic Acid and Calcium Hydroxylapatite 被引量:1
13
作者 Elisabeth Hanf Ursula Gresser 《Advances in Aging Research》 2014年第2期130-141,共12页
Background: Semi-permanent fillers are among the most favorable fillers on the market. Through their unique mode of action and its associated lasting aesthetic effect, they take an exceptional position. Objective: To ... Background: Semi-permanent fillers are among the most favorable fillers on the market. Through their unique mode of action and its associated lasting aesthetic effect, they take an exceptional position. Objective: To compare the two semi-permanent fillers Poly-L-Lactic Acid (PLLA) and calcium hydroxylapatite (CaHA) in reference to the aesthetic result, patient satisfaction and side effects. Methods: Studies on side effects, patient satisfaction and aesthetic results after augmentation with semi-permanent fillers were analyzed. Results: Semi-permanent fillers seem excellently suited for the augmentation of very deep wrinkles particularly in the lower half of the face. In general, high patient satisfaction can be determined with both fillers. Here, the effect from the polylactic acid can be verified for up to two years while no effect could be verified already after one year in a majority of the patients augmented with CaHA. Short-term side effects such as bleedings or erythema in the region of the augmented area have been observed in both fillers during augmentation. The incidence of nodules and granulomas seems significantly higher in augmentations with PLLA compared to CaHA. Rare side effects such as an embolization of a blood vessel caused by the implant have been described for both fillers in case reports. Conclusion: Semi-permanent fillers are superbly suited for wrinkle augmentation. Which filler is the preferred one in what case depends strongly on the individual needs of the patient and the therapist’s experience. 展开更多
关键词 polylactic acid Calcium Hydroxylapatite Sculptra^(■) Radiesse^(■) GRANULOMA Semi-Permanent Fillers
下载PDF
Preparation and Properties of Heat Resistant Polylactic Acid(PLA)/Nano-SiO2 Composite Filament 被引量:1
14
作者 吴改红 刘淑强 +1 位作者 JIA Husheng DAI Jinming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期164-171,共8页
In order to improve the thermal properties of polylactic acid(PLA) filament,nano-SiO_2 was applied to mix with PLA,then they were spun as composite filament by melt-spinning.The dispersion of nano SiO_2 and the frac... In order to improve the thermal properties of polylactic acid(PLA) filament,nano-SiO_2 was applied to mix with PLA,then they were spun as composite filament by melt-spinning.The dispersion of nano SiO_2 and the fracture surfaces of filaments were studied by scanning electron microscopy(SEM).The properties of composite filament,such as orientation degree,mechanical properties,and surface friction properties,were analyzed.The thermal performances of composite filament were analyzed by differential scanning calorimetry(DSC) and thermo gravimetric analysis(TGA).The results showed that the nano-SiO_2 modified by 5% KH-550 could disperse evenly and loosely in nano-scale,and 1 wt% and 3 wt% nano-SiO_2 dispersed throughout PLA evenly.As the quantity of nano-SiO_2 increased,the properties of composite filament,such as orientation degree,friction coefficient,thermal decomposition temperature,and glass transition temperature,increased more or less.The breaking tenacity increased when 1 wt% SiO_2 was added in PLA,but declined when 3 wt% SiO_2 was added. 展开更多
关键词 polylactic acid PLA composite filament nano-silicon dioxide(nano-SiO_2) thermal property
下载PDF
The Application of Cellulose Nanocrystals Modified with Succinic Anhydride under the Microwave Irradiation for Preparation of Polylactic Acid Nanocomposites
15
作者 Ewa Szefer Agnieszka Leszczyńska +1 位作者 Edyta Hebda Krzysztof Pielichowski 《Journal of Renewable Materials》 SCIE EI 2021年第6期1127-1142,共16页
The aim of this work was to use cellulose nanocrystals that were obtained by hydrolysis in phosphoric acid solution and further modified with succinic anhydride in the microwave field for PLA reinforcement.A series of... The aim of this work was to use cellulose nanocrystals that were obtained by hydrolysis in phosphoric acid solution and further modified with succinic anhydride in the microwave field for PLA reinforcement.A series of allbionanocomposites containing unmodified and surface modified cellulose nanocrystals with CNC content in the range of 1–3%_(w.t.) were obtained by melt blending and tested by XRD,SEM,DSC and DMA to investigate the effect of surface esterification of CNCs on the structure,morphology,dynamic mechanical properties of bionanocomposites,as well as phase transitions of PLA in the presence of cellulosic nanofiller.DMA investigations showed the highest increase of storage modulus by ca.7%(335 MPa at 25℃)in the glassy state of PLA for 2%_(w.t.)of unmodified CNC.Though,addition of 2%_(w.t.)of succinylated CNCs caused the highest increase of the onset of glass transition temperature(by 6.2℃)thus widening the temperature range of biocomposite application.The increase of glass transition temperature indicates the strongest interfacial interactions due to improved miscibility of surface modified nanocrystals and thus good dispersion of additive in PLA matrix providing high interface. 展开更多
关键词 Cellulose nanocrystals CNC WHISKERS surface modification succinic anhydride PLA polylactic acid NANOCOMPOSITES
下载PDF
Lactoferrin-Conjugated Polylactic Acid Nanobubbles Encapsulated Perfluoropentane as a Contrast Agent for Ultrasound/Magnetic Resonance Dual-Modality Imaging
16
作者 Liqiong Ding Pingsheng Li +3 位作者 Liu He Fengnan Xu Jieqiong Ding Binhua Luo 《Journal of Renewable Materials》 SCIE EI 2022年第3期767-780,共14页
The development of contrast agents that can be activated by multiple modes is of great significance for tumor diagnosis.In this study,the lactoferrin(Lf)-conjugated polylactic acid(PLLA)nanobubbles(Lf-PLLA NBs)were us... The development of contrast agents that can be activated by multiple modes is of great significance for tumor diagnosis.In this study,the lactoferrin(Lf)-conjugated polylactic acid(PLLA)nanobubbles(Lf-PLLA NBs)were used to encapsulate liquid perfluoropentane(PFP)with the double emulsion method,creating PFP loaded(PFP/Lf-PLLA)NBs for the ultrasound/magnetic resonance dual-modality imaging of subcutaneous tumor.The parti-cle diameter and stability of nanobubbles were investigated by photon correlation spectroscopy.The biocompat-ibility of nanobubbles was preliminarily evaluated by cell proliferation and migration assay,hemolysis rate,and blood biochemistry analysis.A B-mode clinical ultrasound real-time imaging system was used to perform ultra-sonic imaging in vivo.Magnetic resonance imaging in vivo was applied with a clinical 3.0 T magnetic resonance imaging(MRI)scanner system.The mean particle diameter of PFP/Lf-PLLA NBs was 320.2±4.1 nm with a low polydispersity index(PDI,0.145±0.025),and the NBs were negatively charged(−11.4±0.4 mV).The transmis-sion electron microscopy(TEM)results showed that PFP/Lf-PLLA NBs exhibited highly monodispersed and pos-sessed an obvious spherical structure of nanocapsules.Nanobubbles had good stability at 4°C.Different concentrations of the PFP/Lf-PLLA NBs solution had no effect on the cell in cytotoxicity and cell migration,and the results of hemolysis rate and blood biochemistry assay also indicated the good biocompatibility of NBs.On the ultrasound/magnetic resonance imaging of tumor-bearing mice,PFP/Lf-PLLA NBs showed signifi-cantly enhanced contrast ability of tumor tissue.Therefore,PFP/Lf-PLLA NBs had great potential to be a contrast agent for tumor dual-modality imaging in vivo. 展开更多
关键词 LACTOFERRIN polylactic acid NANOBUBBLES contrast agent ultrasound/magnetic resonance imaging
下载PDF
Preparation of Nano-composites Membranes with Graphic Oxides and Polylactic Acid
17
作者 贺妍 王宗彦 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第4期995-998,共4页
Organic polymer materials were used as a layer of adhesive into the graphene sheet between the layers to enhance the interaction force between the nano-structure to achieve excellent mechanical properties and barrier ... Organic polymer materials were used as a layer of adhesive into the graphene sheet between the layers to enhance the interaction force between the nano-structure to achieve excellent mechanical properties and barrier properties. PLA with good flowability and easy processing was selected. The mechanical properties and barrier properties of the graphene-based composites were improved by the use of PLA for good flowability, making it easy to enter the GO layer as a binder. Three methods of preparation of GO/PLA homogeneous composite membranes were designed by vacuum filtration. The experimental results show that the injection of PLA as a molecular binder into the GO layer can effectively mimic the nano-structure, and enhance the intergranular force of the graphene molecules and the compatibility with the polymer matrix. 展开更多
关键词 NANO-STRUCTURE polylactic acid (PLA) graphic oxide (GO) vacuum filtration
下载PDF
Biocomposites of Polylactic Acid Reinforced by DL-Lactic Acid-Grafted Microfibrillated Cellulose
18
作者 Chaodong Liu Yutong Yang +1 位作者 Boyu Cui Weihong Wang 《Journal of Renewable Materials》 SCIE EI 2022年第11期2961-2972,共12页
Microfibrillated cellulose(MFC)is often added to polylactic acid(PLA)matrixes as a reinforcing filler to obtain fully-biodegradable composites with improved mechanical properties.However,the incompatibility between MF... Microfibrillated cellulose(MFC)is often added to polylactic acid(PLA)matrixes as a reinforcing filler to obtain fully-biodegradable composites with improved mechanical properties.However,the incompatibility between MFC and the PLA matrix limits the mechanical performance of MFC-reinforced PLA composites.In this paper,DL-lactic acid-grafted-MFC(MFC-g-DL)was used to improve the compatibility with PLA.Reinforced composites were prepared by melt extrusion and hot-cold pressing.The tensile strength of the PLA/MFC-g-DL composite increased by 22.1%compared with that of PLA after adding 1%MFC-g-DL.Scanning electron microscopy(SEM),differential scanning calorimetry(DSC),and dynamic thermomechanical analysis(DMA)were used to explore the enhancement mechanism.The energy dissipation in the MFC network and the improved compatibility between PLA and MFC-g-DL played important roles in the reinforcement.The SEM results showed that there was a closer combination between PLA and MFC-g-DL.The DSC results showed that the addition of cellulose changed the glass transition temperature,melting temperature,and crystallization temperature of PLA.The TG results showed that the initial and maximum decomposition temperature were lower than those of PLA.The ultraviolet spectra showed that the composite had good transparency at a low concentration of MFC-g-DL. 展开更多
关键词 polylactic acid microfibrillated cellulose tensile properties TRANSPARENCY
下载PDF
Improvement in the Performance of the Polylactic Acid Composites by Using Deep Eutectic Solvent Treated Pulp Fiber
19
作者 Lei Tan Liangxian Liu +1 位作者 Chaodong Liu Weihong Wang 《Journal of Renewable Materials》 SCIE EI 2021年第11期1897-1911,共15页
As the most favorable alternative to petroleum-based polymers,polylactic acid(PLA)which is the most promising degradable polymer has attracted increasing attention.However,the addition of cellulose to improve its stre... As the most favorable alternative to petroleum-based polymers,polylactic acid(PLA)which is the most promising degradable polymer has attracted increasing attention.However,the addition of cellulose to improve its strength often results in a reduction in its toughness.In this work,microscale cellulose is first prepared from pulp fibers by using a deep eutectic solvent,and then is used as the reinforcement of PLA.A microcrystalline cellulose(MCC)/PLA sheet with uniform texture is obtained by the solution mixing,melt blending,hot-pressing and cold-pressing process.The effects of MCC on the crystallization,thermal stability and mechanical properties of the PLA matrix were studied.Upon the addition of 1%cellulose fiber,the tensile strength of MCC/PLA composite sheet increased by 27%,and the elongation at break did not shown an evident decrease.The strength enhancement mechanism was elucidated using scanning electron microscopy,differential scanning calorimetry,and dynamic thermomechanical analysis.The energy dissipation during the deformation process and the compatibility of AMCC and rougher surface of MCC play important role in the strength enhancement.Additionally,UV spectroscopy showed that the composite material absorbed some ultraviolet light.Our results show that the combined use of a deep eutectic solvent and solution mixing is an effective approach for improving the strength of PLA while maintaining its toughness. 展开更多
关键词 polylactic acid microcrystalline cellulose deep eutectic solvent mechanical properties
下载PDF
Preparation and Properties of Polylactic Acid( PLA) /Nano-SiO_2 Composite Master Batch with Good Thermal Properties
20
作者 刘淑强 吴改红 +2 位作者 郭红霞 左中鹅 戴晋明 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期97-102,共6页
In order to improve the thermal properties of polylactic acid( PLA) master batch,the nano-SiO2 was applied to mixing with PLA. The structure and thermal properties of the composite master batches were studied. The res... In order to improve the thermal properties of polylactic acid( PLA) master batch,the nano-SiO2 was applied to mixing with PLA. The structure and thermal properties of the composite master batches were studied. The results showed that the nano-SiO2 modified by 3% coupling agent KH-570 could be dispersed evenly in PLA in small scale. The thermal decomposition temperature of composite master batches increased by 6. 20-10. 80 ℃, the glass transition temperature increased by 0. 22-5. 16 ℃,and the heat enthalpy at the glass transition temperature increased by 0. 574-2. 437 J /g,compared with pure PLA. The composite master batch possessed superior thermal stability and heat resistance. 展开更多
关键词 composite master batch NANO-SIO2 polylactic acid(PLA) thermal property
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部