A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neuro- trophic factor are all peptides or ...A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neuro- trophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the micro- spheres at 300-pm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implanta- tion, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and dis- tributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.展开更多
Biodegradable polymer microspheres that can be used as drug carriers are of great importance in biomedical applications,however,there are still challenges in controllable preparation of microsphere surface morphology ...Biodegradable polymer microspheres that can be used as drug carriers are of great importance in biomedical applications,however,there are still challenges in controllable preparation of microsphere surface morphology and improvement of bioactivity.In this paper,firstly,poly(L-lactic acid)(PLLA)was synthesised by ring-opening polymerisation under anhydrous anaerobic conditions and further combined with the emulsion method,biodegradable PLLA microspheres(PM)with sizes ranging from 60-100μm and with good sphericity were prepared.In addition,to further improve the surface morphology of PLLA microspheres and enhance their bioactivity,functionalised porous PLLA microspheres loaded with magnesium oxide(MgO)/magnesium carbonate(MgCO_(3))(PMg)were also prepared by the emulsion method.The results showed that the loading of MgO/MgCO_(3)resulted in the formation of a porous structure on the surface of the microspheres(PMg)and the dissolved Mg^(2+)could be released slowly during the degradation of microspheres.In vitro cellular experiments demonstrated the good biocompatibility of PM and PMg,while the released Mg^(2+)further enhanced the anti-inflammatory effect and osteogenic activity of PMg.Functionalised PMg not only show promise for controlled preparation of drug carriers,but also have translational potential for bone regeneration.展开更多
[Objectives]To prepare donepezil hydrochloride microspheres and evaluate their quality.[Methods]The donepezil hydrochloride microspheres were prepared by emulsification-solvent evaporation method.The morphology was ob...[Objectives]To prepare donepezil hydrochloride microspheres and evaluate their quality.[Methods]The donepezil hydrochloride microspheres were prepared by emulsification-solvent evaporation method.The morphology was observed by scanning electron microscopy and the particle size distribution was determined by Laser Diffraction Method.The encapsulation efficiency,drug loading capacity,and in vitro release were determined by HPLC.[Results]The prepared donepezil hydrochloride microspheres were spherical with the average particle diameter of 15.927 μm.The drug loading capacity was 35.62%.The encapsulation efficiency was 90.32%.The drug release in vitro lasted for14 d.The release curve accorded with the first-order kinetic equation.[Conclusions]The prepared donepezil hydrochloride microspheres performed good sustained release effect in vitro,and it was expected to be used for research on Parkinson's disease.展开更多
以聚乳酸/羟基乙酸(PLGA)共聚物为药物装载材料、油酸改性的四氧化三铁(Fe 3 O 4@OA)纳米颗粒为磁性功能材料,制备姜黄素/PLGA磁性微球,考察了乳化方法、高速均质速度、水油相体积比、PLGA用量、水相聚乙烯醇(PVA)质量分数、Fe 3 O 4@O...以聚乳酸/羟基乙酸(PLGA)共聚物为药物装载材料、油酸改性的四氧化三铁(Fe 3 O 4@OA)纳米颗粒为磁性功能材料,制备姜黄素/PLGA磁性微球,考察了乳化方法、高速均质速度、水油相体积比、PLGA用量、水相聚乙烯醇(PVA)质量分数、Fe 3 O 4@OA用量和姜黄素用量对磁性微球粒径的影响,并通过光学显微镜、激光粒度仪、紫外分光光度计、振动样品磁强计、热重分析仪等对其形貌及理化性能进行分析。研究结果显示:姜黄素/PLGA磁性微球的最佳制备工艺为选用搅拌-均质两步乳化法、高速均质15000 r/min、水油相体积比10∶1、PLGA用量100 mg、水相PVA质量分数1%、Fe 3 O 4@OA用量40 mg和姜黄素用量40 mg,此条件下制备的微球表面光滑,粒径较均一,多分散性指数(PDI)为0.38,平均粒径为3.60μm,微球的磁感应强度为14.12(A·m^(2))/kg,含磁量约为27.98%。载药微球的包封率为97.09%,载药率为6.40%,在体外释放实验中表现出明显的缓释效果。展开更多
基金financially supported by a grant from the Natural Science Foundation of Hunan Province of China,No.13JJ6016
文摘A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neuro- trophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the micro- spheres at 300-pm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implanta- tion, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and dis- tributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.
基金National Key R&D Program of China,Nos.2018YFE0201500,2022YFC2405802National Natural Science Foundation of China,No.51973060.
文摘Biodegradable polymer microspheres that can be used as drug carriers are of great importance in biomedical applications,however,there are still challenges in controllable preparation of microsphere surface morphology and improvement of bioactivity.In this paper,firstly,poly(L-lactic acid)(PLLA)was synthesised by ring-opening polymerisation under anhydrous anaerobic conditions and further combined with the emulsion method,biodegradable PLLA microspheres(PM)with sizes ranging from 60-100μm and with good sphericity were prepared.In addition,to further improve the surface morphology of PLLA microspheres and enhance their bioactivity,functionalised porous PLLA microspheres loaded with magnesium oxide(MgO)/magnesium carbonate(MgCO_(3))(PMg)were also prepared by the emulsion method.The results showed that the loading of MgO/MgCO_(3)resulted in the formation of a porous structure on the surface of the microspheres(PMg)and the dissolved Mg^(2+)could be released slowly during the degradation of microspheres.In vitro cellular experiments demonstrated the good biocompatibility of PM and PMg,while the released Mg^(2+)further enhanced the anti-inflammatory effect and osteogenic activity of PMg.Functionalised PMg not only show promise for controlled preparation of drug carriers,but also have translational potential for bone regeneration.
基金Supported by National Innovative Training Program for College Students(201610443020)
文摘[Objectives]To prepare donepezil hydrochloride microspheres and evaluate their quality.[Methods]The donepezil hydrochloride microspheres were prepared by emulsification-solvent evaporation method.The morphology was observed by scanning electron microscopy and the particle size distribution was determined by Laser Diffraction Method.The encapsulation efficiency,drug loading capacity,and in vitro release were determined by HPLC.[Results]The prepared donepezil hydrochloride microspheres were spherical with the average particle diameter of 15.927 μm.The drug loading capacity was 35.62%.The encapsulation efficiency was 90.32%.The drug release in vitro lasted for14 d.The release curve accorded with the first-order kinetic equation.[Conclusions]The prepared donepezil hydrochloride microspheres performed good sustained release effect in vitro,and it was expected to be used for research on Parkinson's disease.
文摘以聚乳酸/羟基乙酸(PLGA)共聚物为药物装载材料、油酸改性的四氧化三铁(Fe 3 O 4@OA)纳米颗粒为磁性功能材料,制备姜黄素/PLGA磁性微球,考察了乳化方法、高速均质速度、水油相体积比、PLGA用量、水相聚乙烯醇(PVA)质量分数、Fe 3 O 4@OA用量和姜黄素用量对磁性微球粒径的影响,并通过光学显微镜、激光粒度仪、紫外分光光度计、振动样品磁强计、热重分析仪等对其形貌及理化性能进行分析。研究结果显示:姜黄素/PLGA磁性微球的最佳制备工艺为选用搅拌-均质两步乳化法、高速均质15000 r/min、水油相体积比10∶1、PLGA用量100 mg、水相PVA质量分数1%、Fe 3 O 4@OA用量40 mg和姜黄素用量40 mg,此条件下制备的微球表面光滑,粒径较均一,多分散性指数(PDI)为0.38,平均粒径为3.60μm,微球的磁感应强度为14.12(A·m^(2))/kg,含磁量约为27.98%。载药微球的包封率为97.09%,载药率为6.40%,在体外释放实验中表现出明显的缓释效果。