The main disadvantage of conventional ureteral stents commonly used to provide urinary drainage after urological practice is that the patients have to undergo a secondary surgical procedure to remove stents. A new bra...The main disadvantage of conventional ureteral stents commonly used to provide urinary drainage after urological practice is that the patients have to undergo a secondary surgical procedure to remove stents. A new braided thin-walled biodegradable ureteral stent composed of PGA ( polyglycolic acid) and PLGA ( eopolymer of polylactic and polygiycolic acid) mnltifilaments was evaluated in v/tro in this study. In vitro degradation was performed in artificial urine with pH of 5.8 and the temperature of 37~C. The mass loss, mechanical properties, and morphology were observed at different degradaing time intervals of 0, 1, 2, 3, 4, and 5 weeks. The stent had a thinner wail than those of other degradable stents and provided better mechanical properties. The braided thin-walled biodegradable ureteral stents began to degrade after 2 weeks. At the week of 5, the stents were fully degraded. The degradative process of stents is smooth and well controlled.展开更多
[Objectives]To prepare donepezil hydrochloride microspheres and evaluate their quality.[Methods]The donepezil hydrochloride microspheres were prepared by emulsification-solvent evaporation method.The morphology was ob...[Objectives]To prepare donepezil hydrochloride microspheres and evaluate their quality.[Methods]The donepezil hydrochloride microspheres were prepared by emulsification-solvent evaporation method.The morphology was observed by scanning electron microscopy and the particle size distribution was determined by Laser Diffraction Method.The encapsulation efficiency,drug loading capacity,and in vitro release were determined by HPLC.[Results]The prepared donepezil hydrochloride microspheres were spherical with the average particle diameter of 15.927 μm.The drug loading capacity was 35.62%.The encapsulation efficiency was 90.32%.The drug release in vitro lasted for14 d.The release curve accorded with the first-order kinetic equation.[Conclusions]The prepared donepezil hydrochloride microspheres performed good sustained release effect in vitro,and it was expected to be used for research on Parkinson's disease.展开更多
[Objectives]To use poly(lactic-co-glycolic acid)(PLGA)nanoparticles to improve the bioavailability and brain entrance capability of Salidroside(Sal).[Methods]An emulsion solvent evaporation approach was used to create...[Objectives]To use poly(lactic-co-glycolic acid)(PLGA)nanoparticles to improve the bioavailability and brain entrance capability of Salidroside(Sal).[Methods]An emulsion solvent evaporation approach was used to create PLGA nanoparticles(Sal-NP).The preparation parameters were optimized using a single factor experiment.The particle size and zeta potential were determined using the laser particle analyzer,and the morphology of the nanoparticles was observed using transmission electron microscopy.The encapsulation efficiency and drug loading were determined using HPLC.Subsequently,the in vitro drug release was determined using a dynamic dialysis method,and the cellular uptake and cytotoxicity were determined using the bEnd3 cell model.[Results]The ultrasonic time and power for preparing Sal-NP were 6 min and 100 W,respectively.The size of the nanoparticles was 162.0±74.86 nm,and the morphology of Sal-NP was spherical like.After 48 h,the cumulative release of Sal-NP was 62%,indicating that Sal showed a controlled release property in Sal-NP.Cellular uptake study showed that the PLGA nanoparticles remarkably increased the internalization than control group(P<0.001).In addition,Sal-NPs were non-toxic to cells at concentrations ranging from 12.5 to 100μM.[Conclusions]PLGA nanoparticles is promising to be exploited in Alzheimer's disease research due to the increasing absorption and controlled release advantages for Sal.展开更多
基金Program for Outstanding Medical Academic of Shanghai,China (No. LJ10016)Joint Key Project for the New Technology of Shanghai Municipal Hospital,China (No. SHDC12010108)+1 种基金111 Project"Biomedical Textile Materials Science and Technology",China (No.B07024)Doctoral Fund of Ministry of Education of China (No. 20100075110001)
文摘The main disadvantage of conventional ureteral stents commonly used to provide urinary drainage after urological practice is that the patients have to undergo a secondary surgical procedure to remove stents. A new braided thin-walled biodegradable ureteral stent composed of PGA ( polyglycolic acid) and PLGA ( eopolymer of polylactic and polygiycolic acid) mnltifilaments was evaluated in v/tro in this study. In vitro degradation was performed in artificial urine with pH of 5.8 and the temperature of 37~C. The mass loss, mechanical properties, and morphology were observed at different degradaing time intervals of 0, 1, 2, 3, 4, and 5 weeks. The stent had a thinner wail than those of other degradable stents and provided better mechanical properties. The braided thin-walled biodegradable ureteral stents began to degrade after 2 weeks. At the week of 5, the stents were fully degraded. The degradative process of stents is smooth and well controlled.
基金Supported by National Innovative Training Program for College Students(201610443020)
文摘[Objectives]To prepare donepezil hydrochloride microspheres and evaluate their quality.[Methods]The donepezil hydrochloride microspheres were prepared by emulsification-solvent evaporation method.The morphology was observed by scanning electron microscopy and the particle size distribution was determined by Laser Diffraction Method.The encapsulation efficiency,drug loading capacity,and in vitro release were determined by HPLC.[Results]The prepared donepezil hydrochloride microspheres were spherical with the average particle diameter of 15.927 μm.The drug loading capacity was 35.62%.The encapsulation efficiency was 90.32%.The drug release in vitro lasted for14 d.The release curve accorded with the first-order kinetic equation.[Conclusions]The prepared donepezil hydrochloride microspheres performed good sustained release effect in vitro,and it was expected to be used for research on Parkinson's disease.
基金Special Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine(2021MS121).
文摘[Objectives]To use poly(lactic-co-glycolic acid)(PLGA)nanoparticles to improve the bioavailability and brain entrance capability of Salidroside(Sal).[Methods]An emulsion solvent evaporation approach was used to create PLGA nanoparticles(Sal-NP).The preparation parameters were optimized using a single factor experiment.The particle size and zeta potential were determined using the laser particle analyzer,and the morphology of the nanoparticles was observed using transmission electron microscopy.The encapsulation efficiency and drug loading were determined using HPLC.Subsequently,the in vitro drug release was determined using a dynamic dialysis method,and the cellular uptake and cytotoxicity were determined using the bEnd3 cell model.[Results]The ultrasonic time and power for preparing Sal-NP were 6 min and 100 W,respectively.The size of the nanoparticles was 162.0±74.86 nm,and the morphology of Sal-NP was spherical like.After 48 h,the cumulative release of Sal-NP was 62%,indicating that Sal showed a controlled release property in Sal-NP.Cellular uptake study showed that the PLGA nanoparticles remarkably increased the internalization than control group(P<0.001).In addition,Sal-NPs were non-toxic to cells at concentrations ranging from 12.5 to 100μM.[Conclusions]PLGA nanoparticles is promising to be exploited in Alzheimer's disease research due to the increasing absorption and controlled release advantages for Sal.