Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading i...Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.展开更多
Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Fin...Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.展开更多
In this study, Ultra High Performance Electrospray Ionization Ion Trap Time of Flight Mass Spectrometry (UHPLC-ESI-1T-TOF MS) method is used to screen the polymer additives in drinking water that is stored in Polyet...In this study, Ultra High Performance Electrospray Ionization Ion Trap Time of Flight Mass Spectrometry (UHPLC-ESI-1T-TOF MS) method is used to screen the polymer additives in drinking water that is stored in Polyethylene Terephthalate (PET) bottles. After directly analyzing the commercially available water samples, 3 polymer additives (chimassorb 81, irgafos 168 and oleamide) were detected. However, after exposure to sunshine for 8 days, two additional polymer additives (antioxidant 2246 and Butylated Hydroxytoluene (BHT)) were detected besides the former three additives.展开更多
The drag reducing effect of polymer additive aqueous solution was investigated in flow boiling, and the polymer additives were two kinds of polyacrylamide (PAM) with relative molecular mass about 2.56×10 6 and 8....The drag reducing effect of polymer additive aqueous solution was investigated in flow boiling, and the polymer additives were two kinds of polyacrylamide (PAM) with relative molecular mass about 2.56×10 6 and 8.55×10 6. The frictional pressure drop was calculated according to the measured total pressure drop. The results show that the flow drag of flow boiling is reduced by adding a small amount of PAM to water when heat flux is in the range of 15.1 kW·m -2 to 47.0 kW·m -2 , when the mass fraction of PAM is higher than 2.0×10 -5 , the drag reducing effect is obvious. Drag reducing effect of PAM, whose relative molecular mass is 8.55×10 6, is slightly better than that of 2.56×10 6 at the same mass fraction, and the greater the flow rate of the additive solution, the better the effect of the drag reduction.展开更多
This paper described a new type of multifunctional polymer Noverite^(TM) AD810's calcium ion chelating performance, tinted glass soaking test and its application in containing chlorine or enzyme automatic dishwash...This paper described a new type of multifunctional polymer Noverite^(TM) AD810's calcium ion chelating performance, tinted glass soaking test and its application in containing chlorine or enzyme automatic dishwashing detergent gel and powder. Results showed Noverite^(TM) AD810 has good performance in the final formulation on chelation, anti-filming, and anti-spotting, as well as to prevent the growth of scale crystals.展开更多
The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles wit...The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodeeyl sulfate, and sodium dodeeyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobie properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfaetant and one kind of multiple hydroxyl compound were similar to those of one kind of surfaetant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions With isoeyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent.展开更多
Perovskite solar cells(PSCs)have become the promising next-generation photovoltaic devices due to their excellent photoelectric performances,and the power conversion efficiencies(PCEs)have experienced unprecedented ra...Perovskite solar cells(PSCs)have become the promising next-generation photovoltaic devices due to their excellent photoelectric performances,and the power conversion efficiencies(PCEs)have experienced unprecedented rapid increase in recent years.However,to realize the practical application of PSCs,high performance and long-term stability are required and the preparation of high-quality perovskite film is the key.Herein,we adopt a simple and effective method to prepare high-quality perovskite films by introducing the poly(vinylidene fluoride)(PVDF)polymer additive with abundant hydrophobic F.As the growth template,the PVDF promotes the growth of perovskite crystal,improves the crystallinity and film morphology,thus reducing defect density and inhibiting carrier recombination.The results show that the photovoltaic performances of the perovskite device with PVDF are meaningfully improved,and a high PCE of 21.42%is achieved with an improvement of 10.87%,More importantly,the PVDF-based perovskites display greatly enhanced humidity and heat stability due to the protection of strong hydrophobic barrier from F and PVDF long chain.Aging at 45%±5%relative humidity(RH)for 2400 h and 850 C for300 h,respectively,the unsealed PVDF devices can maintain over 90%of the initial PCE.It indicates that suitable polymer additives can improve the film quality to acquire high-performance and stable PSCs and lay a foundation to design new perovskite light absorption layer with different polymers for the further development of PSCs.展开更多
AM-AMPS-TAC polymers with different charge distribution are synthesized using acrylamide(AM),2-acrylamido-2-methylpropanesulfonate(AMPS)and 3-acrylamidopropyl trimethylammonium(TAC)at different feed ratios by polymeri...AM-AMPS-TAC polymers with different charge distribution are synthesized using acrylamide(AM),2-acrylamido-2-methylpropanesulfonate(AMPS)and 3-acrylamidopropyl trimethylammonium(TAC)at different feed ratios by polymerization in solution.The salt-responsive behavior,reasons leading to salt-responsiveness,and effects of polymers molecular structure on salt-responsiveness are studied by laboratory experiments to find out the adaptability of the polymers.Rheology test under stepwise shear mode shows that the AM-AMPS-TAC polymers have salt responsiveness,and the closer the feeds of AMPS and ATC,the more significant the salt responsiveness will be.Conformation change of polymers molecular chain under salt stimulus is studied by turbidity test and micro-morphology analysis,and the responsive mechanism is further investigated by intrinsic viscosity test and copolymer composition analysis.Results indicate that the salt-responsive behavior of AM-AMPS-TAC polymers derives from the"curled to expanded"transition of chain conformation under salt stimulus,and this transition is led by the screening effect of salt which weakens polymers intramolecular ionic bond.Application in saturated saltwater drilling fluid shows that the AM90-AMPS5-TAC5 polymer has the best salt-tolerance and temperature-tolerance when used together with fluid loss controller PAC-Lv.The drilling fluid saturated with NaCl can maintain stable viscosity,good dispersion and low fluid loss for long time under 150℃.展开更多
Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and perme...Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and permeability of polyamide NF membranes. However, nanoadditives generally displayed a poor dispersion in membranes or in fabrication process. To solve this problem, we showed an interesting concept that novel NF membranes with hybrid selective layer consisting of flexible polyisobutylene(PIB) and rigid polyamide could be fabricated from well-defined interfacial polymerization. The hydrophobic polymer mediated phase separation and microdomains formation in polyamide layer were found. The immiscibility between the rigid polyamide and flexible PIB as well as the resultant interface effect was interpreted as the reason for the polymer enhanced permselectivity, which was similar with the well-known thin film nanocomposite(TFN) membranes that nanoparticles incorporated contributed significantly to membrane permeability and rejection performance.Our results have demonstrated that novel NF membranes with enhanced performance can be prepared from immiscible polymers, which is a new area that has not been extensively studied before.展开更多
Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism o...Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism of drag-reducing solution from the view of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in the solution were compared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. The result relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherent structures during bursts has been extracted by the new mu-level criterion based on locally averaged velocity structure function. The effect of polymers on turbulent coherent structures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing the coherent structures that the wall friction is reduced.展开更多
Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed t...Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed that the structure of the obtained polynorbornenes consisted of vinyl addition polymer substructures without any ring-opening structures. The polymers were amorphous with a short-range order, displayed in the WAXD(wide angle X-ray diffraction) diagrams. The glass transition temperatures ranged from 200 to 400 ℃. The effects of the polymerization reaction conditions, such as Al/Fe molar ratio and toluene/CH_2Cl_2 volume ratio, on the activity, intrinsic viscosity and T_g were also studied.展开更多
Poly(ethylene glycol)-poly(n-butyl cyanoacrylate)(PEG-PBCA)is a remarkable drug delivery carrier for permeating blood-brain barrier.In this work,a novel high-gravity procedure was reported to intensify Knoevenagel con...Poly(ethylene glycol)-poly(n-butyl cyanoacrylate)(PEG-PBCA)is a remarkable drug delivery carrier for permeating blood-brain barrier.In this work,a novel high-gravity procedure was reported to intensify Knoevenagel condensation-Michael addition polymerization of PEG-PBCA.A series of PEG-PBCA containing different block ratios were synthesized with narrow molecular weight distribution of polydispersity indexes less than 1.1.Furthermore,the reaction time reduced 60%compared to conventional stirred tank reactor process.Chemical structures of as-prepared polymers were characterized.In vitro drug delivery performance was evaluated.The cytotoxicity of PEG-PBCA to brain microvessel endothelial cells(BMVEC)decreases with the extension of the PEG chain and the shortening of the PBCA chain.The polymer cellular uptake to BMVECs was better after improving hydrophilicity by PEG block.Results of bloodbrain barrier permeability demonstrated that medium length of PBCA chain and short PEG chain are favorable for hydrophobic Nile red permeation,while long PEG chain and short PBCA chain are beneficial to delivery water-soluble doxorubicin hydrochloride(Dox).The average apparent permeability coeffi-cient increased 1.7 and 0.25 times than that of raw Nile red and Dox,respectively.High-gravity intensi-fied condensation polymerization should have great potential in brain drug delivery system.展开更多
Bulk polymerizations of styrene (St) were carried out in the presence of three reversible addition fragmentation chain transfer (RAFT) agents benzyl dithiobenzoate (BDB), cumyl dithiobenzoate(CDB), and 1-phenylethyl d...Bulk polymerizations of styrene (St) were carried out in the presence of three reversible addition fragmentation chain transfer (RAFT) agents benzyl dithiobenzoate (BDB), cumyl dithiobenzoate(CDB), and 1-phenylethyl dithiobenzoate (PEDB) under low ratio of RAFT agent to initiator. The kinetic model was developed to predict polymerization rate, which indicates that the RAFT polymerization of St is a first-order reaction. In the range of experimental conversions, the plots of -ln(1-x) against time t are approximately linear (x is monomer conversion). The kinetic study reveals the existence of strong rate retardation in RAFT polymerization of styrene. A coefficient K_r is defined to estimate the rate retardation in the RAFT system considering the assumption that the retardation in polymerization rate is mainly attributed to slow fragmentation of the intermediate radicals. K_r relates to the structure of RAFT agents as well as the concentrations of RAFT agent and azobis isobutyronitrile (AIBN). For a certain RAFT agent, the value of K_r is enhanced by the increase in the initial concentration of RAFT agent and the higher ratio of RAFT to AIBN. With the same recipe for different RAFT agents, the increasing trend for the values of K_r is BDB<PEDB<CDB.展开更多
Flexible fibrous supercapacitors(FFS)are taking account of as the energy storage devices for wearable electronics owing to their high power density,high safety,long cycle life,and simple manufacturing process.Neverthe...Flexible fibrous supercapacitors(FFS)are taking account of as the energy storage devices for wearable electronics owing to their high power density,high safety,long cycle life,and simple manufacturing process.Nevertheless,FFSs have the disadvantage of low specific capacitance that results from the electrochemical characteristics of the electrical double layer on the carbon fiber electrode.In this study,for the first time,an FFS comprising surface-activated carbon fibers as an electrode/current collector and a redox additive gel polymer electrolyte(FFS-SARE)was fabricated for use as a wearable energy storage device.The FFS-SARE showed outstanding electrochemical performance,namely,high specific capacitances of 891 and 399 mF cm^(-2) at current densities of 70.0 and 400 μA cm^(-2),respectively,and remarkable ultrafast cycling stability over 5000 cycles with 92%capacitance retention at a current density of 400.0 μA cm^(-2).Moreover,they exhibited mechanical flexibility and had high feasibility,and they showed good energy storage performance that renders them suitable for use in wearable electronic textiles.展开更多
The synthesis of a new azobenzene(azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are des...The synthesis of a new azobenzene(azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are described. This main-chain azo polymer(namely Azo-MP6) was prepared via first the synthesis of a diacrylate-type azo monomer and its subsequent Michael addition copolymerization with trans-1,4-cyclohexanediamine under a mild reaction condition. Azo-MP6 was found to have a linear main-chain chemical structure instead of a branched one, as verified by comparing its ~1H-NMR spectrum with that of the azo polymer prepared via the polymer analogous reaction of AzoMP6 with acetic anhydride. The thermal stability, phase transition behavior, and photoresponsivity of Azo-MP6 were characterized with TGA,DSC, POM, XRD, and UV-Vis spectroscopy. The experimental results revealed that it had good thermal stability, low glass transition temperature,broad crystalline phase temperature range, and highly reversible photoresponsivity. Physically crosslinked supramolecular hydrogen-bonded fibers with good mechanical properties and a high alignment order of azo mesogens were readily fabricated from Azo-MP6 by using the simple melt spinning method, and they could show "reversible" photoinduced bending under the same UV light irradiation and good anti-fatigue properties.展开更多
Cyclic polymers have attracted more and more attentions in recent years because of their unique topological structures and characteristic properties in both solution and bulk state. There are relatively few reports on...Cyclic polymers have attracted more and more attentions in recent years because of their unique topological structures and characteristic properties in both solution and bulk state. There are relatively few reports on cyclic polymers, partly because of the more demanding synthetic procedures. In recent years, 'click' reaction, especially Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC), has been widely utilized in the synthesis of cyclic polymer materials because of its high efficiency and low susceptibility to side reactions. In this review, we will focus on three aspects:(1) Constructions of monocyclic polymer using CuAAC 'click' chemistry;(2) Formation of complex cyclic polymer topologies through CuAAC reactions;(3) Using CuAAC 'click' reaction in the precise synthesis of molecularly defined macrocycles. We believe that the CuAAC click reaction is playing an important role in the design and synthesis of functional cyclic polymers.展开更多
The synthesis of sequence controlled polymers received increasing interest in polymer science. This mini review focuses on the principle and methods developed to control the sequence in polymer products from various p...The synthesis of sequence controlled polymers received increasing interest in polymer science. This mini review focuses on the principle and methods developed to control the sequence in polymer products from various polymerization mechanisms and processes. Typical examples are discussed to explicate the progress in this research field.展开更多
Friction drag is a nonnegligible matter when relative motion happens between solid and liquid phase,which brings many inconveniences in ship navigation,fluid transportation,microfluid devices,etc.Thereby various metho...Friction drag is a nonnegligible matter when relative motion happens between solid and liquid phase,which brings many inconveniences in ship navigation,fluid transportation,microfluid devices,etc.Thereby various methods have been developed focusing on friction drag reduction.In this article,a review of several widely studied drag reduction methods is given,specially,their advantages and limitations in practical applications are discussed.Besides,a comparison of different methods is made and the development prospect of drag reduction is concluded.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51076036 and 51206033)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.51121004)+2 种基金the Fundamental Research Funds for the Central Universities,China (Grant No. HIT.BRET2.2010008)the Doctoral Fund of Ministry of Education of China (Grant No. 20112302110020)the China Postdoctoral Science Foundation (Grant No. 2011M500652)
文摘Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51206033 and 51276046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112302110020)+2 种基金the China Postdoctoral Science Foundation(Grant No.2011M500652)the Heilongjiang Postdoctoral Science Foundation,China(Grant No.2011LBH-Z11139)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China(Grant No.HIT.NSRIF.2012070)
文摘Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.
文摘In this study, Ultra High Performance Electrospray Ionization Ion Trap Time of Flight Mass Spectrometry (UHPLC-ESI-1T-TOF MS) method is used to screen the polymer additives in drinking water that is stored in Polyethylene Terephthalate (PET) bottles. After directly analyzing the commercially available water samples, 3 polymer additives (chimassorb 81, irgafos 168 and oleamide) were detected. However, after exposure to sunshine for 8 days, two additional polymer additives (antioxidant 2246 and Butylated Hydroxytoluene (BHT)) were detected besides the former three additives.
文摘The drag reducing effect of polymer additive aqueous solution was investigated in flow boiling, and the polymer additives were two kinds of polyacrylamide (PAM) with relative molecular mass about 2.56×10 6 and 8.55×10 6. The frictional pressure drop was calculated according to the measured total pressure drop. The results show that the flow drag of flow boiling is reduced by adding a small amount of PAM to water when heat flux is in the range of 15.1 kW·m -2 to 47.0 kW·m -2 , when the mass fraction of PAM is higher than 2.0×10 -5 , the drag reducing effect is obvious. Drag reducing effect of PAM, whose relative molecular mass is 8.55×10 6, is slightly better than that of 2.56×10 6 at the same mass fraction, and the greater the flow rate of the additive solution, the better the effect of the drag reduction.
文摘This paper described a new type of multifunctional polymer Noverite^(TM) AD810's calcium ion chelating performance, tinted glass soaking test and its application in containing chlorine or enzyme automatic dishwashing detergent gel and powder. Results showed Noverite^(TM) AD810 has good performance in the final formulation on chelation, anti-filming, and anti-spotting, as well as to prevent the growth of scale crystals.
文摘The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodeeyl sulfate, and sodium dodeeyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobie properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfaetant and one kind of multiple hydroxyl compound were similar to those of one kind of surfaetant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions With isoeyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent.
基金financially supported by Natural Science Foundation of Anhui Province(Grant No.2008085QE208)the National Natural Science Foundation of China(51961165106)。
文摘Perovskite solar cells(PSCs)have become the promising next-generation photovoltaic devices due to their excellent photoelectric performances,and the power conversion efficiencies(PCEs)have experienced unprecedented rapid increase in recent years.However,to realize the practical application of PSCs,high performance and long-term stability are required and the preparation of high-quality perovskite film is the key.Herein,we adopt a simple and effective method to prepare high-quality perovskite films by introducing the poly(vinylidene fluoride)(PVDF)polymer additive with abundant hydrophobic F.As the growth template,the PVDF promotes the growth of perovskite crystal,improves the crystallinity and film morphology,thus reducing defect density and inhibiting carrier recombination.The results show that the photovoltaic performances of the perovskite device with PVDF are meaningfully improved,and a high PCE of 21.42%is achieved with an improvement of 10.87%,More importantly,the PVDF-based perovskites display greatly enhanced humidity and heat stability due to the protection of strong hydrophobic barrier from F and PVDF long chain.Aging at 45%±5%relative humidity(RH)for 2400 h and 850 C for300 h,respectively,the unsealed PVDF devices can maintain over 90%of the initial PCE.It indicates that suitable polymer additives can improve the film quality to acquire high-performance and stable PSCs and lay a foundation to design new perovskite light absorption layer with different polymers for the further development of PSCs.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-003,2016ZX05020-004,2016ZX05040-005)
文摘AM-AMPS-TAC polymers with different charge distribution are synthesized using acrylamide(AM),2-acrylamido-2-methylpropanesulfonate(AMPS)and 3-acrylamidopropyl trimethylammonium(TAC)at different feed ratios by polymerization in solution.The salt-responsive behavior,reasons leading to salt-responsiveness,and effects of polymers molecular structure on salt-responsiveness are studied by laboratory experiments to find out the adaptability of the polymers.Rheology test under stepwise shear mode shows that the AM-AMPS-TAC polymers have salt responsiveness,and the closer the feeds of AMPS and ATC,the more significant the salt responsiveness will be.Conformation change of polymers molecular chain under salt stimulus is studied by turbidity test and micro-morphology analysis,and the responsive mechanism is further investigated by intrinsic viscosity test and copolymer composition analysis.Results indicate that the salt-responsive behavior of AM-AMPS-TAC polymers derives from the"curled to expanded"transition of chain conformation under salt stimulus,and this transition is led by the screening effect of salt which weakens polymers intramolecular ionic bond.Application in saturated saltwater drilling fluid shows that the AM90-AMPS5-TAC5 polymer has the best salt-tolerance and temperature-tolerance when used together with fluid loss controller PAC-Lv.The drilling fluid saturated with NaCl can maintain stable viscosity,good dispersion and low fluid loss for long time under 150℃.
基金Supported by the National Basic Research Program of China(2015CB655303)the Natural Science Foundation of Zhejiang Province(Q14B040003)
文摘Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and permeability of polyamide NF membranes. However, nanoadditives generally displayed a poor dispersion in membranes or in fabrication process. To solve this problem, we showed an interesting concept that novel NF membranes with hybrid selective layer consisting of flexible polyisobutylene(PIB) and rigid polyamide could be fabricated from well-defined interfacial polymerization. The hydrophobic polymer mediated phase separation and microdomains formation in polyamide layer were found. The immiscibility between the rigid polyamide and flexible PIB as well as the resultant interface effect was interpreted as the reason for the polymer enhanced permselectivity, which was similar with the well-known thin film nanocomposite(TFN) membranes that nanoparticles incorporated contributed significantly to membrane permeability and rejection performance.Our results have demonstrated that novel NF membranes with enhanced performance can be prepared from immiscible polymers, which is a new area that has not been extensively studied before.
基金supported by the National Natural Science Foundation of China (11272233)National Basic Research Program (973 Program) (2012CB720101)2012 opening subjects of The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences
文摘Fully developed turbulent flow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel to investigate the mechanism of drag-reducing solution from the view of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in the solution were compared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. The result relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherent structures during bursts has been extracted by the new mu-level criterion based on locally averaged velocity structure function. The effect of polymers on turbulent coherent structures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing the coherent structures that the wall friction is reduced.
基金Supported by the Special Funds for Major State Basic Research Projects( No.G19990 64 80 0 ),the National NaturalScience Foundation of China( No.2 973 4141) ,and SKL EP ( 0 0 62 ) ,SINOPEC and CNPC.
文摘Polynorbornenes were synthesized in the presence of an iron based catalyst, 2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine iron(Ⅱ) dichloride. The FTIR, 1H NMR and 13C NMR analysis results revealed that the structure of the obtained polynorbornenes consisted of vinyl addition polymer substructures without any ring-opening structures. The polymers were amorphous with a short-range order, displayed in the WAXD(wide angle X-ray diffraction) diagrams. The glass transition temperatures ranged from 200 to 400 ℃. The effects of the polymerization reaction conditions, such as Al/Fe molar ratio and toluene/CH_2Cl_2 volume ratio, on the activity, intrinsic viscosity and T_g were also studied.
基金This work was supported by National Key Research and Development Program of China(2016YFA0201701).
文摘Poly(ethylene glycol)-poly(n-butyl cyanoacrylate)(PEG-PBCA)is a remarkable drug delivery carrier for permeating blood-brain barrier.In this work,a novel high-gravity procedure was reported to intensify Knoevenagel condensation-Michael addition polymerization of PEG-PBCA.A series of PEG-PBCA containing different block ratios were synthesized with narrow molecular weight distribution of polydispersity indexes less than 1.1.Furthermore,the reaction time reduced 60%compared to conventional stirred tank reactor process.Chemical structures of as-prepared polymers were characterized.In vitro drug delivery performance was evaluated.The cytotoxicity of PEG-PBCA to brain microvessel endothelial cells(BMVEC)decreases with the extension of the PEG chain and the shortening of the PBCA chain.The polymer cellular uptake to BMVECs was better after improving hydrophilicity by PEG block.Results of bloodbrain barrier permeability demonstrated that medium length of PBCA chain and short PEG chain are favorable for hydrophobic Nile red permeation,while long PEG chain and short PBCA chain are beneficial to delivery water-soluble doxorubicin hydrochloride(Dox).The average apparent permeability coeffi-cient increased 1.7 and 0.25 times than that of raw Nile red and Dox,respectively.High-gravity intensi-fied condensation polymerization should have great potential in brain drug delivery system.
文摘Bulk polymerizations of styrene (St) were carried out in the presence of three reversible addition fragmentation chain transfer (RAFT) agents benzyl dithiobenzoate (BDB), cumyl dithiobenzoate(CDB), and 1-phenylethyl dithiobenzoate (PEDB) under low ratio of RAFT agent to initiator. The kinetic model was developed to predict polymerization rate, which indicates that the RAFT polymerization of St is a first-order reaction. In the range of experimental conversions, the plots of -ln(1-x) against time t are approximately linear (x is monomer conversion). The kinetic study reveals the existence of strong rate retardation in RAFT polymerization of styrene. A coefficient K_r is defined to estimate the rate retardation in the RAFT system considering the assumption that the retardation in polymerization rate is mainly attributed to slow fragmentation of the intermediate radicals. K_r relates to the structure of RAFT agents as well as the concentrations of RAFT agent and azobis isobutyronitrile (AIBN). For a certain RAFT agent, the value of K_r is enhanced by the increase in the initial concentration of RAFT agent and the higher ratio of RAFT to AIBN. With the same recipe for different RAFT agents, the increasing trend for the values of K_r is BDB<PEDB<CDB.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2020R1C1C1010611).
文摘Flexible fibrous supercapacitors(FFS)are taking account of as the energy storage devices for wearable electronics owing to their high power density,high safety,long cycle life,and simple manufacturing process.Nevertheless,FFSs have the disadvantage of low specific capacitance that results from the electrochemical characteristics of the electrical double layer on the carbon fiber electrode.In this study,for the first time,an FFS comprising surface-activated carbon fibers as an electrode/current collector and a redox additive gel polymer electrolyte(FFS-SARE)was fabricated for use as a wearable energy storage device.The FFS-SARE showed outstanding electrochemical performance,namely,high specific capacitances of 891 and 399 mF cm^(-2) at current densities of 70.0 and 400 μA cm^(-2),respectively,and remarkable ultrafast cycling stability over 5000 cycles with 92%capacitance retention at a current density of 400.0 μA cm^(-2).Moreover,they exhibited mechanical flexibility and had high feasibility,and they showed good energy storage performance that renders them suitable for use in wearable electronic textiles.
基金financially supported by the National Natural Science Foundation of China (Nos. 21574070 and 21774063)Natural Science Foundation of Tianjin (No. 16JCZDJC36800)
文摘The synthesis of a new azobenzene(azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are described. This main-chain azo polymer(namely Azo-MP6) was prepared via first the synthesis of a diacrylate-type azo monomer and its subsequent Michael addition copolymerization with trans-1,4-cyclohexanediamine under a mild reaction condition. Azo-MP6 was found to have a linear main-chain chemical structure instead of a branched one, as verified by comparing its ~1H-NMR spectrum with that of the azo polymer prepared via the polymer analogous reaction of AzoMP6 with acetic anhydride. The thermal stability, phase transition behavior, and photoresponsivity of Azo-MP6 were characterized with TGA,DSC, POM, XRD, and UV-Vis spectroscopy. The experimental results revealed that it had good thermal stability, low glass transition temperature,broad crystalline phase temperature range, and highly reversible photoresponsivity. Physically crosslinked supramolecular hydrogen-bonded fibers with good mechanical properties and a high alignment order of azo mesogens were readily fabricated from Azo-MP6 by using the simple melt spinning method, and they could show "reversible" photoinduced bending under the same UV light irradiation and good anti-fatigue properties.
基金financially supported by the National Natural Science Foundation of China(No.21234005)the State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Program of Innovative Research Team of Soochow University
文摘Cyclic polymers have attracted more and more attentions in recent years because of their unique topological structures and characteristic properties in both solution and bulk state. There are relatively few reports on cyclic polymers, partly because of the more demanding synthetic procedures. In recent years, 'click' reaction, especially Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC), has been widely utilized in the synthesis of cyclic polymer materials because of its high efficiency and low susceptibility to side reactions. In this review, we will focus on three aspects:(1) Constructions of monocyclic polymer using CuAAC 'click' chemistry;(2) Formation of complex cyclic polymer topologies through CuAAC reactions;(3) Using CuAAC 'click' reaction in the precise synthesis of molecularly defined macrocycles. We believe that the CuAAC click reaction is playing an important role in the design and synthesis of functional cyclic polymers.
基金supported by the National Natural Science Foundation of China(21474016)
文摘The synthesis of sequence controlled polymers received increasing interest in polymer science. This mini review focuses on the principle and methods developed to control the sequence in polymer products from various polymerization mechanisms and processes. Typical examples are discussed to explicate the progress in this research field.
基金The work was financially supported by the National Natural Science Foundation of China(Nos.51527901 and 51922058).
文摘Friction drag is a nonnegligible matter when relative motion happens between solid and liquid phase,which brings many inconveniences in ship navigation,fluid transportation,microfluid devices,etc.Thereby various methods have been developed focusing on friction drag reduction.In this article,a review of several widely studied drag reduction methods is given,specially,their advantages and limitations in practical applications are discussed.Besides,a comparison of different methods is made and the development prospect of drag reduction is concluded.