With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio...With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.展开更多
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ...Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.展开更多
Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution...Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.展开更多
Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pr...Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.展开更多
AM-AMPS-TAC polymers with different charge distribution are synthesized using acrylamide(AM),2-acrylamido-2-methylpropanesulfonate(AMPS)and 3-acrylamidopropyl trimethylammonium(TAC)at different feed ratios by polymeri...AM-AMPS-TAC polymers with different charge distribution are synthesized using acrylamide(AM),2-acrylamido-2-methylpropanesulfonate(AMPS)and 3-acrylamidopropyl trimethylammonium(TAC)at different feed ratios by polymerization in solution.The salt-responsive behavior,reasons leading to salt-responsiveness,and effects of polymers molecular structure on salt-responsiveness are studied by laboratory experiments to find out the adaptability of the polymers.Rheology test under stepwise shear mode shows that the AM-AMPS-TAC polymers have salt responsiveness,and the closer the feeds of AMPS and ATC,the more significant the salt responsiveness will be.Conformation change of polymers molecular chain under salt stimulus is studied by turbidity test and micro-morphology analysis,and the responsive mechanism is further investigated by intrinsic viscosity test and copolymer composition analysis.Results indicate that the salt-responsive behavior of AM-AMPS-TAC polymers derives from the"curled to expanded"transition of chain conformation under salt stimulus,and this transition is led by the screening effect of salt which weakens polymers intramolecular ionic bond.Application in saturated saltwater drilling fluid shows that the AM90-AMPS5-TAC5 polymer has the best salt-tolerance and temperature-tolerance when used together with fluid loss controller PAC-Lv.The drilling fluid saturated with NaCl can maintain stable viscosity,good dispersion and low fluid loss for long time under 150℃.展开更多
Cationic polymer drilling fluid (CPDF) is a new water base drilling fluid in which high molecular weight (HMW) cationic polymer (CPAM) is an encapsulating and flocculating agent and organic quaternary ammonium compoun...Cationic polymer drilling fluid (CPDF) is a new water base drilling fluid in which high molecular weight (HMW) cationic polymer (CPAM) is an encapsulating and flocculating agent and organic quaternary ammonium compound (NW-1) acts as shale inhibitor. This paper describes the experimental results of cuttings recovery, particle size distribution layer spacing and Zeta potential, and discusses the inhibition of CPDF system and its major additives. The advantages of CPDF will be proved by its application in well LX-2.展开更多
Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydra...Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydration.An infrared spectral method and a thermogravimetric technique were used to characterize the chemical composition of the HLMP and evaluate its heat stability.Experiments were conducted to measure the linear swelling,rolling recovery rate,and bentonite inhibition rate and evaluate accordingly the inhibition performance of the HLMP.Moreover,the HLMP was characterized through measurements of the zeta potential,particle size distribution,contact angles,and interlayer space testing.As confirmed by the results,the HLMP could successfully be synthesized with a favorable heat stability.Furthermore,favorable results were found for the inhibitory processes of the HLMP on swelling and dispersed hydration during mud shale hydration.The positively charged HLMP could be electrically neutralized with clay particles,thereby inhibiting diffusion in the double electron clay layers.The hydrophobic group in the HLMP molecular structure resulted in the formation of a hydrophobic membrane on the rock surface,enhancing the hydrophobicity of the rock.In addition,the small molecules of the HLMP could plug the spaces between the layers of bentonite crystals,thereby reducing the entry of water molecules and inhibiting shale hydration.展开更多
Adding the polyamine inhibitor into drilling fluid can effectively strengthen the rejection capability and improve the rheological behavior of drilling fluid system. According to the analysis of the comparison of the ...Adding the polyamine inhibitor into drilling fluid can effectively strengthen the rejection capability and improve the rheological behavior of drilling fluid system. According to the analysis of the comparison of the physiochemical properties of the polyamine inhibitor, a polyamine polymer drilling fluid system was established by means of adding UAE polyamine into traditional polymer drilling fluid. Conventional properties and environmental influence of this system have been evaluated in this paper. The result indicates that the polymer drilling fluid system optimized by polyamine shows a high-performance, such as excellent rejection performance, better rheological and filtration properties, better environmental protection functions. Thus it can be used in high water-sensitive, high temperature, high pressure or vulnerable formation drilling operations.展开更多
Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcoholwater medium by a solvothermal method. Then, through radica...Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcoholwater medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive mono- mer N-isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA- St) nanospheres at 80 ℃, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD- SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability展开更多
Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free...Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block.展开更多
In the experiment,the filtrate loss of synthetic fluid loss control fluid was recorded in room temperature and high temperature in the composite brine base and sodium chloride brine base slurry,and compared with the f...In the experiment,the filtrate loss of synthetic fluid loss control fluid was recorded in room temperature and high temperature in the composite brine base and sodium chloride brine base slurry,and compared with the filtrate loss before base polymer addition.In this way,the effect of filtration loss and salt resistance and temperature resistance of synthetic polymers were evaluated.The influence of the synthesized polymer on the rheological properties of the composite brine was also evaluated by determining the viscosity of the drilling fluid added to the base slurry and polymer.In the end,the structure of the synthetic polymers was characterized through the infrared spectrum,which initially analyzed through the mechanism of its function in reducing the filter loss.Finally,the products produced according to the recipe are given to the site and added to the two wells to record the drilling fluid performance data.展开更多
文摘With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.
文摘Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.
文摘Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.
基金Project(50574061) supported by the National Natural Science Foundation of China
文摘Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-003,2016ZX05020-004,2016ZX05040-005)
文摘AM-AMPS-TAC polymers with different charge distribution are synthesized using acrylamide(AM),2-acrylamido-2-methylpropanesulfonate(AMPS)and 3-acrylamidopropyl trimethylammonium(TAC)at different feed ratios by polymerization in solution.The salt-responsive behavior,reasons leading to salt-responsiveness,and effects of polymers molecular structure on salt-responsiveness are studied by laboratory experiments to find out the adaptability of the polymers.Rheology test under stepwise shear mode shows that the AM-AMPS-TAC polymers have salt responsiveness,and the closer the feeds of AMPS and ATC,the more significant the salt responsiveness will be.Conformation change of polymers molecular chain under salt stimulus is studied by turbidity test and micro-morphology analysis,and the responsive mechanism is further investigated by intrinsic viscosity test and copolymer composition analysis.Results indicate that the salt-responsive behavior of AM-AMPS-TAC polymers derives from the"curled to expanded"transition of chain conformation under salt stimulus,and this transition is led by the screening effect of salt which weakens polymers intramolecular ionic bond.Application in saturated saltwater drilling fluid shows that the AM90-AMPS5-TAC5 polymer has the best salt-tolerance and temperature-tolerance when used together with fluid loss controller PAC-Lv.The drilling fluid saturated with NaCl can maintain stable viscosity,good dispersion and low fluid loss for long time under 150℃.
文摘Cationic polymer drilling fluid (CPDF) is a new water base drilling fluid in which high molecular weight (HMW) cationic polymer (CPAM) is an encapsulating and flocculating agent and organic quaternary ammonium compound (NW-1) acts as shale inhibitor. This paper describes the experimental results of cuttings recovery, particle size distribution layer spacing and Zeta potential, and discusses the inhibition of CPDF system and its major additives. The advantages of CPDF will be proved by its application in well LX-2.
基金The work is supported by the Integration and Testing of Safe and Fast Drilling and Completion Technologies for Complex Ultra-Deep Wells(2020F-46)Major Technology Field Test of Joint-Stock Company(Drilling and Production Engineering).Xuyang received the grant.
文摘Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydration.An infrared spectral method and a thermogravimetric technique were used to characterize the chemical composition of the HLMP and evaluate its heat stability.Experiments were conducted to measure the linear swelling,rolling recovery rate,and bentonite inhibition rate and evaluate accordingly the inhibition performance of the HLMP.Moreover,the HLMP was characterized through measurements of the zeta potential,particle size distribution,contact angles,and interlayer space testing.As confirmed by the results,the HLMP could successfully be synthesized with a favorable heat stability.Furthermore,favorable results were found for the inhibitory processes of the HLMP on swelling and dispersed hydration during mud shale hydration.The positively charged HLMP could be electrically neutralized with clay particles,thereby inhibiting diffusion in the double electron clay layers.The hydrophobic group in the HLMP molecular structure resulted in the formation of a hydrophobic membrane on the rock surface,enhancing the hydrophobicity of the rock.In addition,the small molecules of the HLMP could plug the spaces between the layers of bentonite crystals,thereby reducing the entry of water molecules and inhibiting shale hydration.
文摘Adding the polyamine inhibitor into drilling fluid can effectively strengthen the rejection capability and improve the rheological behavior of drilling fluid system. According to the analysis of the comparison of the physiochemical properties of the polyamine inhibitor, a polyamine polymer drilling fluid system was established by means of adding UAE polyamine into traditional polymer drilling fluid. Conventional properties and environmental influence of this system have been evaluated in this paper. The result indicates that the polymer drilling fluid system optimized by polyamine shows a high-performance, such as excellent rejection performance, better rheological and filtration properties, better environmental protection functions. Thus it can be used in high water-sensitive, high temperature, high pressure or vulnerable formation drilling operations.
基金financial support from the National Science Foundation of China (Nos. 51374233, 51474235)the Postdoctoral Innovative Project Foundation of Shandong Province (No. 201602027)+2 种基金the Qingdao Postdoctoral Applied Research Project (No. 2015242)the Fundamental Research Funds for the Central Universities (No. 15CX06021A)the Graduate Student Innovation Project from China University of Petroleum (East China) (No. YCX2015011)
文摘Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcoholwater medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive mono- mer N-isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA- St) nanospheres at 80 ℃, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD- SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability
基金Supported by China National Science and Technology Major Project(2017ZX05009-003)National Natural Science Foundation(51474231)China National Petroleum Corporation Project(HX20180961)
文摘Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block.
基金National Natural Science Foundation of China(41072109).
文摘In the experiment,the filtrate loss of synthetic fluid loss control fluid was recorded in room temperature and high temperature in the composite brine base and sodium chloride brine base slurry,and compared with the filtrate loss before base polymer addition.In this way,the effect of filtration loss and salt resistance and temperature resistance of synthetic polymers were evaluated.The influence of the synthesized polymer on the rheological properties of the composite brine was also evaluated by determining the viscosity of the drilling fluid added to the base slurry and polymer.In the end,the structure of the synthetic polymers was characterized through the infrared spectrum,which initially analyzed through the mechanism of its function in reducing the filter loss.Finally,the products produced according to the recipe are given to the site and added to the two wells to record the drilling fluid performance data.