期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Properties of polyferric-silicate-sulfate(PFSS) coagulant 被引量:2
1
作者 Bao-yu, G. Qin-yan, Y. +1 位作者 Hua-zhang, Z. Yong-hui, S. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第2期107-110,共4页
Polyferric\|silicate\|sulfate(PFSS),as a new type of coagulant,was prepared by using sodium silicate, sulfuric acid and ferric sulfate as materials.The zeta potential of hydrolyzate of PFSS under different pH values w... Polyferric\|silicate\|sulfate(PFSS),as a new type of coagulant,was prepared by using sodium silicate, sulfuric acid and ferric sulfate as materials.The zeta potential of hydrolyzate of PFSS under different pH values was investigated.The effects of Fe/SiO\-2 molar ratio and dosage of PFSS on turbidity removal were studied. The relation between the optimum coagulation pH range and Fe/SiO\-2 molar ratio was found and the coagulation mechanism of PFSS was discussed.The experimental results showed that Fe/SiO\-2 molar ratio has an effect on the zeta potential of hydrolyzate, the coagulation performance and the optimum coagulation pH range of PFSS and that PFSS gives the best turbidity removal effect when its Fe/SiO\-2 molar ratio was 1.5. 展开更多
关键词 inorganic polymer coagulant polyferric\|silicate\|sulfate polymerization of silicic acid zeta potential turbidity removal CLC number: X703 Document code: A
下载PDF
Removal of total cyanide in coking wastewater during a coagulation process: Significance of organic polymers 被引量:9
2
作者 Jian Shen He Zhao +2 位作者 Hongbin Cao Yi Zhang Yongsheng Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期231-239,共9页
Whether a cationic organic polymer can remove more total cyanide (TCN) than a non-ionic organic polymer during the same flocculation system has not been reported previously. In this study, the effects of organic pol... Whether a cationic organic polymer can remove more total cyanide (TCN) than a non-ionic organic polymer during the same flocculation system has not been reported previously. In this study, the effects of organic polymers with different charge density on the removal mechanisms of TCN in coking wastewater are investigated by polyferric sulfate (PFS) with a cationic organic polymer (PFS-C) or a non-ionic polymer (PFS-N). The coagulation experiments results show that residual concentrations of TCN (Fe(CN)6^3-) after PFS-C flocculation (TCN 〈 0.2 mg/L) are much lower than that after PFS-N precipitation. This can be attributed to the different TCN removal mechanisms of the individual organic polymers. To investigate the roles of organic polymers, physical and structural characteristics of the floes are analyzed by FT-IR, XPS, TEM and XRD. Owing to the presence of N+ in PFS-C, Fe(CN)3- and negative flocs (Fe(CN)63- adsorbed on ferric hydroxides) can be removed via charge neutralization and electrostatic patch flocculation by the cationic organic polymer. However, non-ionic N in PFS-N barely reacts with cyanides through sweeping or bridging, which indicates that the non-ionic polymer has little influence on TCN removal. 展开更多
关键词 cationic polymer total cyanide removal coking wastewater coagulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部