Air-curing is usually applied to the polymer-derived SiC fibers and, as a result, oxygen is embedded to the material. An effective relationship between oxygen content of the SiC fibers and mass gain of their precursor...Air-curing is usually applied to the polymer-derived SiC fibers and, as a result, oxygen is embedded to the material. An effective relationship between oxygen content of the SiC fibers and mass gain of their precursor fibers was established. Results also showed that oxygen content has a great influence on the mechanical properties and excellent tensile strength is usually obtained at the oxygen content of 12%~13%, similar to the density of SiC fibers. Oxygen content has a positive effect on the ceramic yield, and thus, is good to the density and tensile strength; while, oxygen content is also negative to volume content of SiC phase and crystallization of the SiC fibers, and thus, detrimental to the density and tensile strength. Both of the two effects result in the peak behavior of the tensile strength of SiC fibers.展开更多
Defects of polymer-derived Si-C-O fibers were intensively studied by the SEM and TEM techniques and their originations were also discussed on the basis of factors experiments.The defects were found mainly in the form ...Defects of polymer-derived Si-C-O fibers were intensively studied by the SEM and TEM techniques and their originations were also discussed on the basis of factors experiments.The defects were found mainly in the form of strumaes,pits and splits on surfaces as well as microflaw networks,porosity clusters and inclusions in the bulk.Factors experiments reveal that a nonuniform or an insufficient curing would result in larger-sized strumaes or interior microflaws.Gas evolution rates due to different firing rates have a great influence on the formation of internal microflaws or porosity clusters and some oxidation-induced pits or splits may be formed on surfaces because of a trace of oxygen or water vapor accumulated from the flowing inert atmosphere during pyrolysis.展开更多
Polymer-derived ceramics(PDCs)pyrolyzed at high temperatures are promising electromagnetic wave(EMW)absorption materials for aerodynamically heated parts of aircraft under harsh environments.Nev-ertheless,high-tempera...Polymer-derived ceramics(PDCs)pyrolyzed at high temperatures are promising electromagnetic wave(EMW)absorption materials for aerodynamically heated parts of aircraft under harsh environments.Nev-ertheless,high-temperature pyrolysis results in a significant increase of electrical and dielectric proper-ties of the ceramics,causing extensive reflection of EMW.To address this challenge,boron nitride-coated carbon nanotubes(BN@CNTs)were fabricated and introduced into polymer-derived SiC(PDC-SiC)by py-rolyzing its precursor higher than 1200℃to form SiC-BN@CNT ceramic composites.The fabricated com-posites with 3 wt.%BN@CNTs pyrolyzed at 1200℃have an effective absorption bandwidth(EAB)of 4.2 GHz(8.2-12.4 GHz)at a thickness of 3.4 mm and the minimum reflection loss(RL min)of-57.20 dB.The ultra-broad EAB of 12.62 GHz(5.38-18 GHz)is obtained by simulation through periodic structure design-ing.The RL of the metamaterials was also measured using an arch testing method at a frequency range of 2-18 GHz and an EAB of 11.52 GHz(6.48-18 GHz)is obtained.The excellent absorption is attributed to the BN layer that limits the electrical conduction of the ceramic composites while retaining the high loss of CNTs.The introduction of BN@CNTs causes the refinement of SiC grains,which provides plenty of interfaces and enhances the interface polarization loss.This work successfully solves the problem that PDCs pyrolyzed at elevated temperatures cannot be used as EMW absorption materials by applying BN coating on CNTs served as absorbers for PDC-SiC.The results of this work greatly broaden the application scope of the PDC systems for EMW absorption.展开更多
Polymer-derived ceramics(PDCs) strategy shows a great deal of advantages for the fabrication of advanced ceramics. Organosilicon polymers facilitate the shaping process and different silicon-based ceramics with contro...Polymer-derived ceramics(PDCs) strategy shows a great deal of advantages for the fabrication of advanced ceramics. Organosilicon polymers facilitate the shaping process and different silicon-based ceramics with controllable components can be fabricated by modifying organosilicon polymers or adding fillers. It is worth noting that silicate ceramics can also be fabricated from organosilicon polymers by the introduction of active fillers, which could react with the produced silica during pyrolysis. The organosilicon polymer-derived ceramics show many unique properties, which have attracted many attentions in various fields. This review summarizes the typical organosilicon polymers and the processing of organosilicon polymers to fabricate silicon-based ceramics, especially highlights the three-dimensional(3 D) printing technique for shaping the organosilicon polymerderived ceramics, which makes the possibility to fabricate silicon-based ceramics with complex structure. More importantly, the recent studies on fabricating typical non-oxide and silicate ceramics derived from organosilicon polymers and their biomedical applications are highlighted.展开更多
SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosph...SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosphere. The porosity of SiC-Si3N4 ceramics decreases to 6.4% due to the addition of inert filler Si3N4. And the content and crystallization degree of free carbon and SiC derived from PCS are improved simultaneously with the increase of thermal treatment temperature. Finally, the free carbon and SiC interconnect, forming the conductive network. As a result, the electromagnetic interference(EMI) shielding performance of the as-prepared ceramic annealed at 1400℃ reaches up to 36 d B, meaning more than99.9% of EM energy is shielded. The low porosity and high EMI shielding performance enable SiC-Si3N4 composite ceramics to be a promising electromagnetic shielding and structural material.展开更多
文摘Air-curing is usually applied to the polymer-derived SiC fibers and, as a result, oxygen is embedded to the material. An effective relationship between oxygen content of the SiC fibers and mass gain of their precursor fibers was established. Results also showed that oxygen content has a great influence on the mechanical properties and excellent tensile strength is usually obtained at the oxygen content of 12%~13%, similar to the density of SiC fibers. Oxygen content has a positive effect on the ceramic yield, and thus, is good to the density and tensile strength; while, oxygen content is also negative to volume content of SiC phase and crystallization of the SiC fibers, and thus, detrimental to the density and tensile strength. Both of the two effects result in the peak behavior of the tensile strength of SiC fibers.
文摘Defects of polymer-derived Si-C-O fibers were intensively studied by the SEM and TEM techniques and their originations were also discussed on the basis of factors experiments.The defects were found mainly in the form of strumaes,pits and splits on surfaces as well as microflaw networks,porosity clusters and inclusions in the bulk.Factors experiments reveal that a nonuniform or an insufficient curing would result in larger-sized strumaes or interior microflaws.Gas evolution rates due to different firing rates have a great influence on the formation of internal microflaws or porosity clusters and some oxidation-induced pits or splits may be formed on surfaces because of a trace of oxygen or water vapor accumulated from the flowing inert atmosphere during pyrolysis.
基金supported by the National Natural Science Foundation of China(Nos.52232005,52172104,and 52293370)Fundamental Research Funds for the Central Universities(China,Nos.3102020QD0411 and D5000220152)+1 种基金Fundamental Research Funds for the Central Universities(No.3102019TS0409)Cre-ative Research Foundation of Science and Technology on Thermo-Structural Composite Materials Laboratory.
文摘Polymer-derived ceramics(PDCs)pyrolyzed at high temperatures are promising electromagnetic wave(EMW)absorption materials for aerodynamically heated parts of aircraft under harsh environments.Nev-ertheless,high-temperature pyrolysis results in a significant increase of electrical and dielectric proper-ties of the ceramics,causing extensive reflection of EMW.To address this challenge,boron nitride-coated carbon nanotubes(BN@CNTs)were fabricated and introduced into polymer-derived SiC(PDC-SiC)by py-rolyzing its precursor higher than 1200℃to form SiC-BN@CNT ceramic composites.The fabricated com-posites with 3 wt.%BN@CNTs pyrolyzed at 1200℃have an effective absorption bandwidth(EAB)of 4.2 GHz(8.2-12.4 GHz)at a thickness of 3.4 mm and the minimum reflection loss(RL min)of-57.20 dB.The ultra-broad EAB of 12.62 GHz(5.38-18 GHz)is obtained by simulation through periodic structure design-ing.The RL of the metamaterials was also measured using an arch testing method at a frequency range of 2-18 GHz and an EAB of 11.52 GHz(6.48-18 GHz)is obtained.The excellent absorption is attributed to the BN layer that limits the electrical conduction of the ceramic composites while retaining the high loss of CNTs.The introduction of BN@CNTs causes the refinement of SiC grains,which provides plenty of interfaces and enhances the interface polarization loss.This work successfully solves the problem that PDCs pyrolyzed at elevated temperatures cannot be used as EMW absorption materials by applying BN coating on CNTs served as absorbers for PDC-SiC.The results of this work greatly broaden the application scope of the PDC systems for EMW absorption.
基金support by grants from the National Natural Science Foundation of China(Grant No.51872185)the Science and Technology Commission of Shanghai Municipality(Grant No.17060502400)the University of Shanghai for Science and Technology(Grant No.2017KJFZ010).
文摘Polymer-derived ceramics(PDCs) strategy shows a great deal of advantages for the fabrication of advanced ceramics. Organosilicon polymers facilitate the shaping process and different silicon-based ceramics with controllable components can be fabricated by modifying organosilicon polymers or adding fillers. It is worth noting that silicate ceramics can also be fabricated from organosilicon polymers by the introduction of active fillers, which could react with the produced silica during pyrolysis. The organosilicon polymer-derived ceramics show many unique properties, which have attracted many attentions in various fields. This review summarizes the typical organosilicon polymers and the processing of organosilicon polymers to fabricate silicon-based ceramics, especially highlights the three-dimensional(3 D) printing technique for shaping the organosilicon polymerderived ceramics, which makes the possibility to fabricate silicon-based ceramics with complex structure. More importantly, the recent studies on fabricating typical non-oxide and silicate ceramics derived from organosilicon polymers and their biomedical applications are highlighted.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51332004, 51521061, 51602258 and 51725205)the 111 Project (B08040)
文摘SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosphere. The porosity of SiC-Si3N4 ceramics decreases to 6.4% due to the addition of inert filler Si3N4. And the content and crystallization degree of free carbon and SiC derived from PCS are improved simultaneously with the increase of thermal treatment temperature. Finally, the free carbon and SiC interconnect, forming the conductive network. As a result, the electromagnetic interference(EMI) shielding performance of the as-prepared ceramic annealed at 1400℃ reaches up to 36 d B, meaning more than99.9% of EM energy is shielded. The low porosity and high EMI shielding performance enable SiC-Si3N4 composite ceramics to be a promising electromagnetic shielding and structural material.