期刊文献+
共找到795篇文章
< 1 2 40 >
每页显示 20 50 100
Multi-objective optimization of the cathode catalyst layer micro-composition of polymer electrolyte membrane fuel cells using a multi-scale,two-phase fuel cell model and data-driven surrogates
1
作者 Neil Vaz Jaeyoo Choi +3 位作者 Yohan Cha Jihoon Kong Yooseong Park Hyunchul Ju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期28-41,I0003,共15页
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes... Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance. 展开更多
关键词 polymer electrolyte membrane fuel cell Surrogate modeling Multi-layer perceptron(MLP) Response surface analysis(RSA) Non-dominated sorting genetic algorithmⅡ(NSGAⅡ)
下载PDF
High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers
2
作者 Jinyuan Li Congrong Yang +3 位作者 Haojiang Lin Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期572-578,共7页
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te... Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs. 展开更多
关键词 fuel cell High-temperature polymer electrolyte membranes Microphase separation Poly(terphenyl piperidinium)s Phosphoric acid
下载PDF
Polymer Electrolyte Membrane Fuel Cells (PEMFC) in Automotive Applications: Environmental Relevance of the Manufacturing Stage 被引量:6
3
作者 Daniel Garraín Yolanda Lechón Cristina de la Rúa 《Smart Grid and Renewable Energy》 2011年第2期68-74,共7页
This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of... This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of the Life Cycle As-sessment (LCA) methodology. Results declare that, depending on the systems characteristics, there are numerous envi-ronmental advantages, but also some disadvantages can be expected. In addition, the significance of the manufac-turing process of the FC, more specifically the Polymer Electrolyte Membrane Fuel Cell (PEMFC) type, in terms of environmental impact is presented. Finally, CIEMAT’s role in HYCHAIN European project, consisting of supporting early adopters for hydrogen FCs in the transport sector, is 展开更多
关键词 fuel cell (FC) polymer electrolyte membrane fuel cell (pemfc) Life Cycle Assessment (LCA) Green-house Gases (GHG) emissions Global Warming IMPACT CATEGORY Energy Resources IMPACT CATEGORY Acidification IMPACT CATEGORY Vehicle MANUFACTURING Phase
下载PDF
Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells 被引量:7
4
作者 Maryam Kiani Jie Zhang +5 位作者 Yan Luo Chunping Jiang Jinlong Fan Gang Wang Jinwei Chen Ruilin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1124-1139,共16页
The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxyg... The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst. 展开更多
关键词 Non-noble metal electrocatalysts polymer electrolyte membrane fuel cells(pemfcs) Oxygen reduction reaction(ORR) ELECTROCATALYSIS Stability
下载PDF
High temperature polymer electrolyte membrane fuel cell 被引量:1
5
作者 K.Scott M.Mamlouk 《电池》 CAS CSCD 北大核心 2006年第5期347-353,共7页
One of the majorissuesli mitingtheintroduction of polymer electrolyte membranefuel cells(PEMFCs) is thelowtemperature ofoperation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount... One of the majorissuesli mitingtheintroduction of polymer electrolyte membranefuel cells(PEMFCs) is thelowtemperature ofoperation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO,inevitably present in reformedfuel.In order to alleviate the problemof COpoisoning andi mprove the power density of the cell,operating at temperature above 100 ℃ispreferred.Nafion-type perfluorosulfonated polymers have been typically used for PEMFC.However,the conductivity of Nafion-typepolymers is not high enoughto be usedfor fuel cell operations at higher temperature(>90 ℃) and atmospheric pressure because they dehy-drate under these condition.An additional problem which faces the introduction of PEMFCtechnology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications.Consequently the use of alternative fuels such as methanol and ethanol is of interest,especially if thiscan be used directlyinthe fuel cell,without reformationto hydrogen.Ali mitation of the direct use of alcohol is thelower activity of oxida-tionin comparison to hydrogen,which means that power densities are considerably lower.Hence to i mprove activity and power outputhigher temperatures of operation are preferable.To achieve this goal,requires a newpolymer electrolyte membrane which exhibits stabilityand high conductivityin the absence of liquid water.Experi mental data on a polybenzi midazole based PEMFC were presented.Asi mple steady-stateisothermal model of the fuel cell is alsoused to aidin fuel cell performance opti misation.The governing equations involve the coupling of kinetic,ohmic and mass transport.Thispaper also considers the advances madeinthe performance of direct methanol and solid polymer electrolyte fuel cells and considers theirli mi-tations in relation to the source and type of fuels to be used. 展开更多
关键词 polybenzi midazole(PBI) high-temperature polymer electrolyte fuel cell METHANOL ETHANOL
下载PDF
Study on durability of Pt supported on graphitized carbon under simulated start-up/shut-down conditions for polymer electrolyte membrane fuel cells 被引量:2
6
作者 Won Suk Jung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期326-334,共9页
The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitize... The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitized carbon induced by heat-treatment. The degree of graphitization starts to increase between 900 and 1300 ℃ as evidenced by the change of specific surface area, interlayer spacing, and ID/IG value. Pt nanoparticles are deposited on fresh carbon black(Pt/CB) and carbon heat-treated at 1700 ℃(Pt/HCB17) with similar particle size and distribution. Electrochemical characterization demonstrates that the Pt/HCB17 shows higher activity than the Pt/CB due to the inefficient microporous structure of amorphous carbon for the oxygen reduction reaction. An accelerating potential cycle between 1.0 and 1.5 V for the carbon corrosion is applied to examine durability at a single cell under the practical start-up/shutdown conditions. The Pt/HCB17 catalyst shows remarkable durability after 3000 potential cycles. The Pt/HCB17 catalyst exhibits a peak power density gain of 3%, while the Pt/CB catalyst shows 65% loss of the initial peak power density. As well, electrochemical surface area and mass activity of Pt/HCB17 catalyst are even more stable than those of the Pt/CB catalyst. Consequently, the high degree of graphitization is essential for the durability of fuel cells in practical start-up/shut-down conditions due to enhancing the strong interaction of Pt and π-bonds in graphitized carbon. 展开更多
关键词 polymer electrolyte membrane fuel ceils membrane electrolyte assembly Carbon corrosion Start-up/shut-down Durability
下载PDF
Effects of Freeze/Thaw Cycles and Gas Purging Method on Polymer Electrolyte Membrane Fuel Cells
7
作者 张生生 俞红梅 +3 位作者 朱红 侯俊波 衣宝廉 明平文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6X期802-805,共4页
At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents o... At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell PEMFC deteriorates markedly. The object of this work is to study the degradation mechanism of key compo- nents of PEMFC—membrane-electrode assembly MEA and seek feasible measures to avoid degradation. The ef- fect of freezethaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freezethaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable per- formance under subzero temperature and gas purging is proved to be the effective operation. 展开更多
关键词 polymer electrolyte membrane fuel cell pemfc freezethaw CYCLE ELECTRODE structure performance degrad
下载PDF
Water-induced electrode poisoning and the mitigation strategy for high temperature polymer electrolyte membrane fuel cells
8
作者 Zinan Zhang Zhangxun Xia +3 位作者 Jicai Huang Fenning Jing Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期569-575,I0016,共8页
Engineering failure of membrane electrode assembly caused by increasingly fuel poisoning in the high temperature polymer electrolyte membrane fuel cells fed with humidified reformate gases is firstly demonstrated here... Engineering failure of membrane electrode assembly caused by increasingly fuel poisoning in the high temperature polymer electrolyte membrane fuel cells fed with humidified reformate gases is firstly demonstrated herein this work. Based on the results of the in-situ environmental scanning electron microscope, electrochemical analyses, and limiting current method, a water-induced phosphoric acid invasion model is constructed in the porous electrode to elucidate the failure causations of the hindered hydrogen mass transport and the enhanced carbon monoxide poisoning. To optimize the phosphoric acid distribution under the inevitably humidified circumstance, a facile and effective strategy of constructing acid-proofed electrode is proposed and demonstrates outstanding stability with highly humidified reformate gases as anode fuel. This work discusses a potential defect that was rarely studied previously under practical working circumstance for high temperature polymer electrolyte membrane fuel cells, providing an alternative opinion of electrode design based on the fundamental aspects towards the engineering problems. 展开更多
关键词 High temperature polymer electrolyte membrane fuel cells Reformate gases Phosphoric acid Porous electrode Interface structure
下载PDF
CFD Analysis of Spiral Flow Fields in Proton Exchange Membrane Fuel Cells
9
作者 Jian Yao Fayi Yan Xuejian Pei 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1425-1445,共21页
Proton exchange membrane fuel cells(PEMFCs)are largely used in various applications because of their pollution-free products and high energy conversion efficiency.In order to improve the related design,in the present ... Proton exchange membrane fuel cells(PEMFCs)are largely used in various applications because of their pollution-free products and high energy conversion efficiency.In order to improve the related design,in the present work a new spiral flow field with a bypass is proposed.The reaction gas enters the flow field in the central path and diffuses in two directions through the flow channel and the bypass.The bypasses are arranged incrementally.The number of bypasses and the cross-section size of the bypasses are varied parametrically while a single-cell model of the PEMFC is used.The influence of the concentration of liquid water and oxygen in the cell on the performance of different flow fields is determined by means of Computational fluid dynamics(COMSOL Multiphysics software).Results show that when the bypass number is 48 and its cross-sectional area is 0.5 mm^(2),the cell exhibits the best performances. 展开更多
关键词 Proton exchange membrane fuel cells(pemfcs) new spiral flow field square plate CFD simulation analysis
下载PDF
Particle Swarm Optimization based predictive control of Proton Exchange Membrane Fuel Cell (PEMFC) 被引量:6
10
作者 任远 曹广益 朱新坚 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第3期458-462,共5页
Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidificat... Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidification system and output performance of PEMFC stack are briefly analyzed. Predictive control of PEMFC based on Support Vector Regression Machine (SVRM) is presented and the SVRM is constructed. The processing plant is modelled on SVRM and the predictive control law is obtained by using Particle Swarm Optimization (PSO). The simulation and the results showed that the SVRM and the PSO re-ceding optimization applied to the PEMFC predictive control yielded good performance. 展开更多
关键词 质子交换膜燃料电池 粒子群最优化 预测控制 支持向量机
下载PDF
Novel phosphonated polymer without anhydride formation for proton exchange membrane fuel cells
11
作者 Mrinmay Mandal 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期469-471,共3页
Proton exchange membrane fuel cells(PEMFCs)are regarded as one of the most promising clean energy technology because of their high energy density,silent emission-free operation,and wide applications[1].Recently,anion ... Proton exchange membrane fuel cells(PEMFCs)are regarded as one of the most promising clean energy technology because of their high energy density,silent emission-free operation,and wide applications[1].Recently,anion exchange membrane fuel cells(AEMFCs)has emerged as an alternative to PEMFCs. 展开更多
关键词 Phosphonated polymers Proton exchange membrane membrane electrode assembly fuel cell DURABILITY
下载PDF
Impact of Separator Thickness on Temperature Distribution in Single Polymer Electrolyte Fuel Cell Based on 1D Heat Transfer
12
作者 Akira Nishimura Daiki Mishima +2 位作者 Nozomu Kono Kyohei Toyoda Mohan Lal Kolhe 《Energy and Power Engineering》 CAS 2022年第7期248-273,共26页
It is known from the New Energy and Industry Technology Development Organization (NEDO) roam map Japan, 2017 that the polymer electrolyte fuel cell (PEFC) power generation system is required to operate at 100°C f... It is known from the New Energy and Industry Technology Development Organization (NEDO) roam map Japan, 2017 that the polymer electrolyte fuel cell (PEFC) power generation system is required to operate at 100°C for application of mobility usage from 2020 to 2025. This study aims to clarify the effect of separator thickness on the distribution of the temperature of reaction surface (T<sub>react</sub>) at the initial temperature of cell (T<sub>ini</sub>) with flow rate, relative humidity (RH) of supply gases as well as RH of air surrounding cell of PEFC. The distribution of T<sub>react</sub> is estimated by means of the heat transfer model considering the H<sub>2</sub>O vapor transfer proposed by the authors. The relationship between the standard deviation of T<sub>react</sub>-T<sub>ini</sub> and total voltage obtained in the experiment is also investigated. We can know the effect of the flow rate of supply gas as well as RH of air surrounding cell of PEFC on the distribution of T<sub>react</sub>-T<sub>ini</sub> is not significant. It is observed the wider distribution of T<sub>react</sub>-T<sub>ini</sub> provides the reduction in power generation performance irrespective of separator thickness. In the case of separator thickness of 1.0 mm, the standard deviation of T<sub>react</sub>-T<sub>ini</sub> has smaller distribution range and the total voltage shows a larger variation compared to the other cases. 展开更多
关键词 polymer electrolyte fuel cell Heat Transfer Modeling H2O Vapor Transfer Temperature Distribution High Temperature
下载PDF
Atomic layer deposition of ultrathin layered TiO_2 on Pt/C cathode catalyst for extended durability in polymer electrolyte fuel cells
13
作者 Sangho Chung Myounghoon Choun +2 位作者 Beomgyun Jeong Jae Kwang Lee Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期256-262,共7页
This study shows the preparation of a TiO2 coated Pt/C(TiO2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO2/Pt/C to be used as a durable cathode catalyst in polymer electrolyt... This study shows the preparation of a TiO2 coated Pt/C(TiO2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO2/Pt/C to be used as a durable cathode catalyst in polymer electrolyte fuel cells(PEFCs). Cyclic voltammetry results revealed that TiO2/Pt/C catalyst which has 2 nm protective layer showed similar activity for the oxygen reduction reaction compared to Pt/C catalysts and they also had good durability. TiO2/Pt/C prepared by 10 ALD cycles degraded 70% after 2000 Accelerated degradation test, while Pt/C corroded 92% in the same conditions. TiO2 ultrathin layer by ALD is able to achieve a good balance between the durability and activity, leading to TiO2/Pt/C as a promising cathode catalyst for PEFCs. The mechanism of the TiO2 protective layer used to prevent the degradation of Pt/C is discussed. 展开更多
关键词 polymer electrolyte hydrogen fuel cells Atomic layer deposition Gas diffusion layer Protective layer Titanium dioxide
下载PDF
Numerical Analysis of Temperature Distributions in Single Cell of Polymer Electrolyte Fuel Cell when Operated in Elevated Temperature Range 被引量:4
14
作者 Akira Nishimura Kanji Patoriki Zamami +2 位作者 Masato Yoshimura Masafumi Hirota Mohan Lal Kolhe 《Journal of Energy and Power Engineering》 2017年第6期393-408,共16页
下载PDF
Temperature Distributions in Single Cell of Polymer Electrolyte Fuel Cell Simulated by an 1D Multi-plate Heat-Transfer Model and a 3D Numerical Simulation Model
15
作者 Akira Nishimura Masashi Baba +3 位作者 Kotaro Osada Takenori Fukuoka MasafumiHirota Eric Hu 《Journal of Energy and Power Engineering》 2015年第8期687-704,共18页
关键词 聚合物电解质燃料电池 表面温度分布 三维数值模拟 传热模型 模型模拟 单电池 平板 一维
下载PDF
加长加宽的PEMFC电堆应力分布一致性仿真与优化
16
作者 张智明 黄刚强 +2 位作者 任辉 陈志浩 章桐 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期127-134,共8页
质子交换膜燃料电池可以通过扩大电堆的活性区域反应面积来获得更高的功率,但电堆反应面积扩大后,容易导致膜电极应力分布的不均匀性增加,从而引起燃料电池电化学性能的下降.为此,本研究设计了4种不同结构尺寸的燃料电池电堆,结合等效... 质子交换膜燃料电池可以通过扩大电堆的活性区域反应面积来获得更高的功率,但电堆反应面积扩大后,容易导致膜电极应力分布的不均匀性增加,从而引起燃料电池电化学性能的下降.为此,本研究设计了4种不同结构尺寸的燃料电池电堆,结合等效刚度模型法和有限元软件,分析了扩大反应面积的电堆结构对膜电极应力分布均匀性的影响,并进一步优化电堆内钢带的安装位置,以提升电堆内部接触压力分布均匀性.研究结果表明,膜电极接触压力分布的均匀性对反应区域宽度的变化较为敏感,当活性区域尺寸加宽,电堆内部活性区域的平均应力标准差增加了23.2%.而当活性区域加长,或同时加长和加宽时,相应增加一根捆扎钢带使电堆内部活性区域的平均应力标准差分别减小了8.6%和8.7%,表明适当增加捆扎钢带的数量可以提高电堆内部接触压力分布的均匀性.此外,钢带位置优化结果显示,电堆外侧钢带越靠近端板侧面时,电堆内部活性区域的应力分布越均匀. 展开更多
关键词 质子交换膜燃料电池 钢带捆扎 电堆放大 膜电极 压力分布一致性
下载PDF
PEMFC压差流道构型特征参数对电池性能的影响
17
作者 赵富强 贾彦奎 +2 位作者 赵小军 祁慧青 范晓宇 《电源学报》 CSCD 北大核心 2024年第1期110-118,共9页
针对质子交换膜燃料电池PEMFC(proton exchange membrane fuel cell)压差流道构型尺寸对电池电化学性能影响机理不明的问题,研究流道高度和脊背宽度对压差流道和直流道在氧气浓度、水浓度分布特征和电流密度、功率密度、压降等方面影响... 针对质子交换膜燃料电池PEMFC(proton exchange membrane fuel cell)压差流道构型尺寸对电池电化学性能影响机理不明的问题,研究流道高度和脊背宽度对压差流道和直流道在氧气浓度、水浓度分布特征和电流密度、功率密度、压降等方面影响规律,并对两者进行了对比分析,结果表明流道高度对压差流道和直流道性能影响较小,压差流道在脊背宽度为1.25 mm和1.50 mm时具有明显优势;进一步研究压差流道变压区对流道性能的影响,结果表明变压区高度为0.05 mm和长度为1.50 mm时,压差流道峰值功率密度最高。综合考虑功率密度和压降的影响,选择压差流道高0.40 mm、宽1.25 mm、脊背宽1.25 mm、变压区长1.50 mm、高0.05 mm,此时压差流道峰值功率密度为0.3661 W/cm^(2),相较于直流道峰值功率密度提升6.3%。 展开更多
关键词 质子交换膜燃料电池 压差流道 流道高度 脊背宽度 变压区
下载PDF
PEMFC船形堵块阴极流场的性能
18
作者 蔡永华 胡健平 罗子贤 《电池》 CAS 北大核心 2024年第1期14-18,共5页
建立流体体积(VOF)两相流模型,研究船形堵块流道的排水性能。建立不同开孔率的船形堵块流道三维模型,研究船形堵块及开孔率对质子交换膜燃料电池(PEMFC)性能的影响。船形堵块流道峰值净功率密度相较于传统直流道可提升9.4%,相较于同堵... 建立流体体积(VOF)两相流模型,研究船形堵块流道的排水性能。建立不同开孔率的船形堵块流道三维模型,研究船形堵块及开孔率对质子交换膜燃料电池(PEMFC)性能的影响。船形堵块流道峰值净功率密度相较于传统直流道可提升9.4%,相较于同堵塞率下的梯形堵块流道可提高2.9%,具有较好的强化传质作用。通过提高船形堵块流道的开孔率,PEMFC可以获得更好的性能。在相同开孔率下,船形堵块流道的氧气摩尔浓度较直流道和梯形堵块流道分别提高28.6%和14.0%。结果表明,相较于传统直流道,船形堵块流道可降低排水周期和流道内平均水含量,具有更好的排水性能。 展开更多
关键词 质子交换膜燃料电池(pemfc) 流道 排水性能 阴极流场 船形堵块 流体体积(VOF)两相流模型
下载PDF
基于P-L双重特征提取的PEMFC系统故障诊断方法
19
作者 贺飞 张雪霞 陈维荣 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期492-499,共8页
针对质子交换膜燃料电池系统故障诊断问题,提出基于P-L双重特征提取的故障诊断方法。使用P-L双重特征提取对预处理后的样本数据进行特征提取,通过冗余变量剔除与二次特征提取,最大程度保留分类特征并有效降低样本数据维度。利用二叉树... 针对质子交换膜燃料电池系统故障诊断问题,提出基于P-L双重特征提取的故障诊断方法。使用P-L双重特征提取对预处理后的样本数据进行特征提取,通过冗余变量剔除与二次特征提取,最大程度保留分类特征并有效降低样本数据维度。利用二叉树多类支持向量机与极限学习机对二维故障特征向量进行分类实现故障诊断。通过实例验证,对比线性判别分析的特征提取效果,P-L双重特征提取可使相同分类器测试集诊断准确率提高21.19%,诊断准确率达99.27%,实现了PEMFC系统膜干、氢气供应故障的精准快速诊断。 展开更多
关键词 质子交换膜燃料电池 故障检测 数据挖掘 P-L双重特征提取 支持向量机 极限学习机
下载PDF
Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems 被引量:2
20
作者 李春华 朱新坚 +2 位作者 隋升 胡万起 胡鸣若 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期474-480,共7页
To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) s... To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper. The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances. Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy. 展开更多
关键词 proton exchange membrane fuel cell pemfc air supply system COMPRESSOR adaptive inverse control (AIC) recurrent fuzzy neural network (RFNN)
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部