Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated ...Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated SPNs with sur-face cloaked by red blood cell membrane(RBCM)are developed for highly e ective photoacoustic imaging and photothermal therapy.The resulting RBCM-coated SPN(SPN@RBCM)displays remarkable near-infrared light absorption and good photosta-bility,as well as high photothermal conver-sion e ciency for photoacoustic imaging and photothermal therapy.Particularly,due to the small size(<5 nm),SPN@RBCM has the advantages of deep tumor penetration and rapid clearance from the body with no appreciable toxicity.The RBCM endows the SPNs with prolonged systematic circulation time,less reticuloendothelial system uptake and reduced immune-recognition,hence improving tumor accumulation after intravenous injection,which provides strong photoacoustic signals and exerts excellent photothermal therapeutic e ects.Thus,this work provides a valuable paradigm for safe and highly e cient tumor pho-toacoustic imaging and photothermal therapy for further clinical translation.展开更多
The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influen...The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influence on the plugging effect of the high-temperature swelled polymer nanoparticles,such as the core permeability,concentration of nanoparticles in the suspension,swelling time and swelling temperature,which makes it flexible to control the plugging effect by controlling displacement experiments conditions.Experimental results show that polymer nanoparticles dispersion system with a concentration of 500 mg/L is suitable for cores plugging with a permeability of 30×10^(-3)-150×10^(-3)μm^(2),even after aging at 150℃ for three months.The shunt flow experiments show that when the displacement factors are optimal values,the polymer nanoparticles after high temperature swelling to plug the high-permeability layer selectivity and almost do not clog the low-permeability layer.Oil recovery of homogeneous artificial core displacement experiment and a heterogeneous double-tube cores model are increased by 20%and 10.4%on the basis of water flooding.The polymer nanoparticles can be a great help for petroleum engineers to better apply this deep profile control and flooding technology.展开更多
Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid mo...Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid monomers.Five kinds of L-amino acids were acryloylated to obtain functional monomers:L-phenylalanine(Phe)and L-leucine(Leu)with hydrophobic side chains,L-glutamic acid(Glu)with negative charges,and L-lysine(Lys)and L-arginine(Arg)with positive charges.After incubating the NPs with fibrinogen,g-globulin,and human serum albumin(HSA)respectively,the NPs that incorporated Nacryloyl-Arg monomers(AArg@NPs)showed the strongest and most specific binding affinity to fibrinogen,when compared with g-globulin and HSA.Additionally,the fibrinogen-AArg binding model had the best docking scores,and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them.The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay,as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture.AArg@NPs had a strong selectivity for,and specificity to,fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.展开更多
Photoacoustic imaging(PAI)is a hybrid imaging method based on photoacoustic(PA)effects,which is able to capture the structure,function,and molecular information of biological tissues with high resolution.To date,thera...Photoacoustic imaging(PAI)is a hybrid imaging method based on photoacoustic(PA)effects,which is able to capture the structure,function,and molecular information of biological tissues with high resolution.To date,therapeutic techniques under the guidance of PAI have provided new strategies for accurate diagnosis and precise treatment of tumors.In particular,conjugated polymer nanoparticles have been extensively inspected for PA-based cancer theranostics largely due to their superior optical properties such as tunable spectrum and large absorption coefficient and their good biocompatibility,and abundant functional groups.This mini-review mainly focuses on the recent advances toward the development of novel conjugated polymer nanoparticles for PA-based multimodal imaging and cancer photothermal therapy.展开更多
Semiconducting polymer nanoparticles(SPNs)have shown great promise in second near-infrared window(NIR-II)phototheranostics.However,the issue of long metabolic time significantly restricts the clinical application of S...Semiconducting polymer nanoparticles(SPNs)have shown great promise in second near-infrared window(NIR-II)phototheranostics.However,the issue of long metabolic time significantly restricts the clinical application of SPNs.In this study,we rationally designed a biodegradable SPN(BSPN50)for NIR-II fluorescence imaging-guided photodynamic therapy(PDT).BSPN50 is prepared by encapsulating a biodegradable SP(BSP50)with an amphiphilic copolymer F-127.BSP50 is composed of NIR-II fluorescent diketopyrrolopyrrole(DPP)segment and degradable poly(phenylenevinylene)(PPV)segment with the ratio of 50/50.BSPN50 has both satisfactory degradability under myeloperoxidase(MPO)/hydrogen peroxide(H_(2)O_(2))and NIR-II fluorescence emission upon 808 nm laser excitation.Furthermore,BSPN50 shows good photodynamic efficacy under 808 nm laser irradiation.BSPN50 shows a faster degradation rate than BSPN100 which has no PPV segment both in vitro and in vivo.In addition,BSPN50 can effectively diagnose tumor via NIR-II fluorescence imaging and inhibit the tumor growth by PDT.Thus,our study provides a rational approach to construct biodegradable nanoplatforms for efficient tumor NIR-II phototheranostics.展开更多
Chemically fueled dissipative self-assembly paves the way for innovative materials with lifelike properties and functions.Achievement of nonequilibrium systems with biocompatibility and biofunctions remains an importa...Chemically fueled dissipative self-assembly paves the way for innovative materials with lifelike properties and functions.Achievement of nonequilibrium systems with biocompatibility and biofunctions remains an important and challenging task.Here,we present biocompatible chemically fueled transient polymer nanoparticles and their applications in temporally programmable in vivo imaging.The lifetime of the transient polymer nanoparticles can be tuned by varying the concentration of polymer,adenosine triphosphate,and phosphatase.Moreover,the transient assembly of polymer nanoparticles can be paused for storage and then subsequently restored.The transient polymer nanoparticles exhibit good biocompatibility.Notably,we implement in vivo imaging in a temporally programmable fashion by using an autonomous fluorescence modulator of transient nanoparticles assembled from polymers with a fluorescence moiety.The results in this work provide a valuable way to achieve nonequilibrium self-assembly of synthetic systems with good biocompatibility and programmable biofunctions,accelerating innovative developments of nonequilibrium soft biomaterials.展开更多
Oral squamous cell carcinoma(OSCC)is the most common malignant tumor of the oral and maxillofacial region.Due to its unique location,earlier and more accurate diagnosis and more minimally invasive treatment of OSCC is...Oral squamous cell carcinoma(OSCC)is the most common malignant tumor of the oral and maxillofacial region.Due to its unique location,earlier and more accurate diagnosis and more minimally invasive treatment of OSCC is of major importance.Herein,gadolinium-containing semiconductor polymer nanoparticles(SPN-Gd)were designed and prepared.The nanoparticles consist of a near-infrared(NIR)absorption semiconductor polymer(PCPDTBT)served as fluorescence signal source and a photothermal conversion agent(PTA)and a gadolinium-grafted triblock amphiphilic copolymer(F127-DTPA-Gd)served as a magnetic resonance imaging(MRI)contrast agent and nanocarrier.The experiments in vivo showed that SPN-Gd could act as an MRI contrast agent and optical image agent with a long retention time,and it had a significant inhibiting effect on tumors of OSCC mice model through photothermal therapy(PTT).Thus our study provides a simple nanotheranostic platform composed of two components for efficient MR/fluorescence dual-modal imaging-guided PTT.展开更多
Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(me...Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-rpoly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2- (dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre- pared simply and emciently by Glaser-coupling of the pendant alkynes in the PMAEP-r- PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by aggregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpartieles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.展开更多
We have developed aggregation-induced emission (AIE) dye loaded polymer nanoparticles with deep-red emission for siRNA delivery to pancreatic cancer cells. Two US Food and Drug Administration (FDA) approved surfac...We have developed aggregation-induced emission (AIE) dye loaded polymer nanoparticles with deep-red emission for siRNA delivery to pancreatic cancer cells. Two US Food and Drug Administration (FDA) approved surfactant polymers, Pluronics F127 and PEGylated phospholipid, were used to prepare the dye-loaded nanoparticle formulations and they can be used as nanovectors for gene silencing of mutant K-ras in pancreatic cancer cells. The successful transfection of siRNA by the developed nanovectors was confirmed by the fluorescent imaging and quantified through flow cytometry. Quantitative real time polymerase chain reaction (PCR) indicates that the expression of the mutant K-ras oncogene from the MiaPaCa-2 pancreatic cancer cells has been successfully suppressed. More importantly, our in vivo toxicity study has revealed that both the nanoparticle formulations are highly biocompatible in BALC/c mice. Overall, our results suggest that the AIE dye-loaded polymer nanoparticle formulations developed here are suitable for gene delivery and have high potential applications in translational medicine research.展开更多
Polymer nanoparticles with dendrimer-Ag shell were prepared and their application in catalytic reduction of 4-nitrophenol (4-NP) was investigated. Cross-linked polystyrene (PS) microspheres were prepared through d...Polymer nanoparticles with dendrimer-Ag shell were prepared and their application in catalytic reduction of 4-nitrophenol (4-NP) was investigated. Cross-linked polystyrene (PS) microspheres were prepared through dispersion copolymerization of styrene, acrylic acid and crosslinking monomer 1, 2- divinylbenzene. PS microspheres with average size of 450 nm and narrow size distribution were used as support for the immobilization of dendrimer-Ag shell, The polyamidoamine (PAMAM) dendrimer shell was successively grafted onto the surface ofPS microspheres through repetitive Michael addition reaction of methyl acrylate (MA) and amidation of the obtained esters with large excess of ethylenediamine (EDA). Silver nanoparticles were formed directly inside the PAMAM shell through reduction with NaBH4. The resulting PS@PAMAM-Ag nanopartides were packed in a stainless steel column and used successfully for catalytic reduction of 4-NP. This technique for packing catalytic polymer particles in a column could imnrove the efficiency of using the metal catalyst and the tedious seuaration in catalytic reaction.展开更多
The intramolecular cross-linking of single polymer chains can form single-chain nanoparticles(SCNPs),which have many applications.In this study,styrenic copolymers with pendent triphenylphosphine as the coordination s...The intramolecular cross-linking of single polymer chains can form single-chain nanoparticles(SCNPs),which have many applications.In this study,styrenic copolymers with pendent triphenylphosphine as the coordination site for platinum ions(Pt(Ⅱ))and benzocyclobutene as the latent reactive groups are synthesized.Triphenylphosphine groups in the chains can coordinate Pt(Ⅱ)and aid slight single-chain folding in dilute solution.The intramolecular cross-linking caused by the ring-open reaction of benzocyclobutene completes the single-chain collapse and forms stable SCNPs in dilute solution.Pt(Ⅱ)embedded in SCNPs can be further reduced to platinum atoms(Pt(0)).Pt(0)steadily and atomically dispersed in SCNPs exhibits better catalytic properties than normal polymer carried platinum particles do for the reduction of p-nitrophenol to p-aminophenol.展开更多
Noninvasive ultrasound is more convenient and easily accessible for controlled drug delivery of polymeric nanoparticles than many other stimuli.However,controlled ultrasound responsiveness is rather challenging as the...Noninvasive ultrasound is more convenient and easily accessible for controlled drug delivery of polymeric nanoparticles than many other stimuli.However,controlled ultrasound responsiveness is rather challenging as the mechanism is still unclear.In this article,we disclose the origin and the key regulating factors of ultrasound responsiveness of block copolymer nanoparticles such as simple vesicles,framboidal vesicles,lamellae,beads-like micelles and complex micelles that are self-assembled from a range of poly(ethylene oxide)-b-polymethacrylates based model copolymers.We discover that the intrinsic ultrasound responsiveness of block copolymer nanoparticles thermodynamically originates from their metastable states,and its expression kinetically relates to the mobility of the hydrophobic segments of block copolymers.Specifically,the self-assembly temperature(Ts) that has been usually considered as a less important factor in most of macromolecular self-assembly systems,and the solvents for the selfassembly are two dominant regulating factors of the ultrasound responsiveness because they determine the thermodynamic state(metastable or stable) of nanoparticles.For example,simple vesicles with good or excellent ultrasound responsiveness can be prepared in THF/water when the Tsis around or slightly below the glass transition temperature(Tg) of the hydrophobic segment of the block copolymer because the combination of this solvent with this Tsfacilitates the formation of metastable vesicles.By contrast,thermodynamically stable solid nanoparticles such as spherical micelles and lamellae(mainly formed in DMF/water)are not sensitive to ultrasound at all,neither are the vesicles in THF/water at stable states when the Tsis highly above Tg.In addition,we unravel that the responsive rate is highly dependent on the sonication temperature(Tu),i.e.,the higher the Tu,the faster the rate.Overall,the above important findings provide us with a fresh insight into how to design ultrasound-responsive nanoparticles and may open new avenues for synthesizing translational noninvasively responsive drug carriers.展开更多
<strong>Background: </strong>Recent decades witnessed a significant growth in terms of phytocompounds based therapeutics, extensively explored for almost all types of existing disorders. They have also bee...<strong>Background: </strong>Recent decades witnessed a significant growth in terms of phytocompounds based therapeutics, extensively explored for almost all types of existing disorders. They have also been widely investigated in Neurodegenerative disorders (NDDs) and Chlorogenic acid (CGA), a polyphenolic compound having potential anti-inflammatory and anti-oxidative properties, emerged as a promising compound in ameliorating NDDs. Owing to its poor stability, bioavailability and release kinetics, CGA needed a suitable nanocarrier based pharmaceutical design for targeting NDDs. <strong>Objective: </strong>The current study is aimed at the <em>in-silico</em> validation of CGA as an effective therapeutic agent targeting various NDDs followed by the fabrication of polymeric nanoparticles-based carrier system to overcome its pharmacological limitations and improve its stability. <strong>Methods:</strong> A successful <em>in-silico</em> validation using molecular docking techniques along with synthesis of CGA loaded polymeric nanoparticles (CGA-NPs) by ionic gelation method was performed. The statistical optimisation of the developed CGA-NPs was done by Box Behnken method and then the optimized formulation of CGA-NPs was characterised using particle size analysis (PSA), Transmission electron microscopy (TEM), Fourier Transform Infrared spectroscopy (FTIR) along with in-vitro release kinetics analysis.<strong> Results & Conclusion:</strong> The results attained exhibited average particle size of 101.9 ± 1.5 nm, Polydispersibility (PDI) score of 0.065 and a ZP of <span style="white-space:nowrap;">−</span>17.4 mV. On a similar note, TEM results showed a size range of CGA-NPs between 90 - 110 nm with a spherical shape of NPs. Also, the data from in-vitro release kinetics showed a sustained release of CGA from the NPs following the first-order kinetics suggesting the appropriate designing of nanoformulation.展开更多
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease with worldwide distribution caused by Betaarterivirus suid (PRRSV). The virion has great genetic and antigenic variability wi...Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease with worldwide distribution caused by Betaarterivirus suid (PRRSV). The virion has great genetic and antigenic variability with a marked increase in virulence. Vaccines tested to date have been of little use in controlling the problems caused by PRRSV, so the present study was conceived to evaluate the antiviral effect of polymeric nanoparticles (PNPs) made with glycyrrhizic acid (GA). Recent work has proven that this nanoparticle system is stable. These nanoparticles have good GA carrying capacity, a size < 250 nm, a spherical morphology, and a wide safety range. The integrity of cell morphology can be maintained for up to 72 h. The antiviral effect of this nanoparticle system was tested in cultures of MARC-145 cells in pre- and coinfection assays with PRRSV to evaluate changes in cell morphology and effects on cell viability. The use of PNPsGA with the real-time quantitative polymerase chain reaction (RT-qPCR) decreased viral infection by 38% in 3 amplification cycles. These results suggest that this system has an antiviral effect against PRRSV under the study conditions established.展开更多
Near infrared(NIR)fluorescence imaging guided photodynamic therapy(PDT)is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring,specific spatiotemporal selec...Near infrared(NIR)fluorescence imaging guided photodynamic therapy(PDT)is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring,specific spatiotemporal selectivity,and minimal invasiveness.For this,photosensitizers with NIR fluorescence emission and high^(1)O_(2)generation quantum yield are highly desirable.Herein,we designed and synthesized a"donor-acceptor"(D-A)structured semiconductor polymer(SP),which was then wrapped with an amphiphilic compound(Pluronic■F127)to prepare water-soluble nanoparticles(F-SP NPs).The obtained F-SP NPs exhibit good water solubility,excellent particle size stability,strong absorbance at deep red region,and strong NIR fluorescent emission characteristics.The maximal mass extinction coe±cient and fluorescence quantum yield of these F-SPs were calculated to be 21.7 L/(g·cm)and 6.5%,respectively.Moreover,the^(1)O_(2)quantum yield of 89%for F-SP NPs has been achieved under 635 nm laser irradiation,which is higher than Methylene Blue,Ce6,and PpIX.The outstanding properties of these F-SP NPs originate from their unique D-A molecular characteristic.This work should help guide the design of novel semiconductor polymer for NIR fluorescent imaging guided PDT applications.展开更多
In this study,a polymeric lipid nanoparticle(NP)(simplified as Lipid NP)was reported as a promising oral vaccine delivery system.The Lipid NPs composed of a hydrophobic polymeric poly(D,L-lactide-co-glycolide)(PLGA)co...In this study,a polymeric lipid nanoparticle(NP)(simplified as Lipid NP)was reported as a promising oral vaccine delivery system.The Lipid NPs composed of a hydrophobic polymeric poly(D,L-lactide-co-glycolide)(PLGA)core and a surface coating of lipid monolayer.Membrane emulsification technique was used to obtain uniform-sized Lipid NPs.Ovalbumin(OVA)was used as a model vaccine.Compared with the pure PLGA NPs,the Lipid NPs achieved higher loading capacity(LC)and entrapment efficiency(EE)for the encapsulated OVA.An in vitro oral release profile showed that the OVA-Lipid NPs were with lower initial burst and could protect the loaded OVA from the harsh gastrointestinal(GI)environment for a long time.In addition,a human microfold cell(M-cell)transcytotic assay demonstrated that due to a lipid layer structure on the particle surface,the Lipid NPs showed higher affinity to the M-cells.Since the M-cell in the intestinal epithelium played an important role in particle transportation as well as intimately associated with the underlying immune cells,the OVA-Lipid NPs effectively induced mucosal and humoral immune responses.展开更多
Melatonin is a natural hormone and with the advancement of age its production declines and thereby may result in some neurological disorders. Exogenous administration of melatonin has been suggested as a neuroprotecti...Melatonin is a natural hormone and with the advancement of age its production declines and thereby may result in some neurological disorders. Exogenous administration of melatonin has been suggested as a neuroprotective agent. Due to its low oral bioavailability, the loading of melatonin in polymeric nanoparticles could be an important tool to effectively use exogenous melatonin. The quantification of the incorporated drug within polymeric nanoparticles is an important step in nanoparticles characterization. An analytical method using high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) was developed and validated for melatonin determination in poly (lactic acid) nanoparticles obtained by a single emulsion-solvent evaporation technique. The melatonin in vitro release profile also was determined by the HPLC method. Mobile phase consisted of acetonitrile: water (65:35, v/v) pumped at a flow rate of 0.9 mL/min, in the isocratic mode and PDA detector was set at 220 nm. The method was validated in terms of the selectivity, linearity, precision, accuracy, robustness, limits of detection and quantification. Analytical curve was linear over the concentration range of 10-100 ~tg/mL, and limits of detection and quantification were 25.9 ng/mL and 78.7 ng/mL, respectively. The mean recovery for melatonin was 100.47% (RSD = 1.25%, n = 9). In the intra- and inter- assay, the coefficient of variation was less than 2%. Robustness was proved performing changes in mobile phase, column temperature and flow rate. The method was suitable for the determination of melatonin encapsulation efficiency in poly(lactic acid) nanopartieles and for the evaluation of melatonin in vitro release profile.展开更多
In order to increase antibacterial abilities and avoid the aggregation of nanoparticle, Ag- ZnO nanocomposites were studied in the network structure which contains bonds, and these bonds are formed by hydrolysis react...In order to increase antibacterial abilities and avoid the aggregation of nanoparticle, Ag- ZnO nanocomposites were studied in the network structure which contains bonds, and these bonds are formed by hydrolysis reaction between Ti(TBOU)4(TBOT) and the water that in Persimmon tannin solution. The size and morphology of Ag-ZnO nanocompos:tes were investigated by scanning electron microscopy (SEM) and field emission scanning electron microscopy(FE-SEM). The antibacterial properties of nanocomposites were examined by minimal bactericidal concentration(MBC). Results showed that this kind of antibacterial nanocomposites composites(ANPs) have excellent antibacterial abilities and without aggregation.展开更多
Combretastatin A4 phosphate(CA4P)is a potent vascular disrupting agent with good water solubility.However,it is only effective at high doses,which decreases clinical applicability.Herein,we designed stable CA4P polyme...Combretastatin A4 phosphate(CA4P)is a potent vascular disrupting agent with good water solubility.However,it is only effective at high doses,which decreases clinical applicability.Herein,we designed stable CA4P polymeric nanoparticles(CA4P NPs)consisting of various cholesterol derivatives,and with a drug loading efficacy of 93%.The nanoparticles released CA4P in a sustained manner and achieved a 72%inhibition rate in the murine H22 liver tumor model,which was about 2.9-fold higher than that of free CA4P(24.6%).Furthermore,the carrier components of CA4P NPs were metabolized to arginine,cholesterol,ethanol and poly(ethylene glycol)in vivo;therefore,the CA4P NPs are safe and have significant potential for clinical translation.展开更多
Cyclic polymers are a class of polymers that feature endless topology,and the synthesis of cyclic polymers has attracted the attention of many researchers.Herein,cyclic polymers were efficiently constructed by self-fo...Cyclic polymers are a class of polymers that feature endless topology,and the synthesis of cyclic polymers has attracted the attention of many researchers.Herein,cyclic polymers were efficiently constructed by self-folding cyclization technique at high concentrations.Linear poly((oligo(ethylene glycol)acrylate)-co-(dodecyl acrylate))(P(OEGA-co-DDA))precursors with different ratios of hydrophilic and hydrophobic moieties were synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization using a bifunctional chain transfer agent with two anthryl end groups.The amphiphilic linear precursors underwent the self-folding process to generate polymeric nanoparticles in water.By irradiating the aqueous solution of the nanoparticles with 365 nm UV light,cyclic polymers were synthesized successfully via coupling of anthryl groups.The effects of the ratios of hydrophilic and hydrophobic moieties in linear P(OEGA-co-DDA)copolymers and polymer concentration on the purity of the obtained cyclic polymers were explored in detail via ^(1)H nuclear magnetic resonance(^(1)H NMR),dynamic light scattering(DLS),UV‒visible(vis)analysis,three-detection size exclusion chromatography(TD-SEC)and transmission electron microscopy(TEM).It was found that by adjusting the content of the hydrophilic segments in linear precursors,single chain polymeric nanoparticles(SCPNs)can be generated at high polymer concentrations.Therefore,cyclic polymers with high purity can be constructed efficiently.This method overcomes the limitation of traditional ring-closure method,which is typically conducted in highly dilute conditions,providing an efficient method for the scalable preparation of cyclic polymers.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61727823,51873160)the joint research project of Health and Education Commission of Fujian Province(Grant No.2019-WJ-20).
文摘Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated SPNs with sur-face cloaked by red blood cell membrane(RBCM)are developed for highly e ective photoacoustic imaging and photothermal therapy.The resulting RBCM-coated SPN(SPN@RBCM)displays remarkable near-infrared light absorption and good photosta-bility,as well as high photothermal conver-sion e ciency for photoacoustic imaging and photothermal therapy.Particularly,due to the small size(<5 nm),SPN@RBCM has the advantages of deep tumor penetration and rapid clearance from the body with no appreciable toxicity.The RBCM endows the SPNs with prolonged systematic circulation time,less reticuloendothelial system uptake and reduced immune-recognition,hence improving tumor accumulation after intravenous injection,which provides strong photoacoustic signals and exerts excellent photothermal therapeutic e ects.Thus,this work provides a valuable paradigm for safe and highly e cient tumor pho-toacoustic imaging and photothermal therapy for further clinical translation.
基金funded by National Natural Science Foundation of China No.51874316 and 51274211National Key Scientific and Technological Project(Grant No.2017ZX05009-004)。
文摘The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influence on the plugging effect of the high-temperature swelled polymer nanoparticles,such as the core permeability,concentration of nanoparticles in the suspension,swelling time and swelling temperature,which makes it flexible to control the plugging effect by controlling displacement experiments conditions.Experimental results show that polymer nanoparticles dispersion system with a concentration of 500 mg/L is suitable for cores plugging with a permeability of 30×10^(-3)-150×10^(-3)μm^(2),even after aging at 150℃ for three months.The shunt flow experiments show that when the displacement factors are optimal values,the polymer nanoparticles after high temperature swelling to plug the high-permeability layer selectivity and almost do not clog the low-permeability layer.Oil recovery of homogeneous artificial core displacement experiment and a heterogeneous double-tube cores model are increased by 20%and 10.4%on the basis of water flooding.The polymer nanoparticles can be a great help for petroleum engineers to better apply this deep profile control and flooding technology.
基金This work was supported by the Natural Science Foundation of Guangdong Province,China(Grant No.:2017A030313775)the Science and Technology Planning Project of Guangdong Province,China(Grant No.:2016A010103016)the Science and Technology Planning Project of Guangzhou City of Guangdong Province,China(Grant No.:201607010148).
文摘Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid monomers.Five kinds of L-amino acids were acryloylated to obtain functional monomers:L-phenylalanine(Phe)and L-leucine(Leu)with hydrophobic side chains,L-glutamic acid(Glu)with negative charges,and L-lysine(Lys)and L-arginine(Arg)with positive charges.After incubating the NPs with fibrinogen,g-globulin,and human serum albumin(HSA)respectively,the NPs that incorporated Nacryloyl-Arg monomers(AArg@NPs)showed the strongest and most specific binding affinity to fibrinogen,when compared with g-globulin and HSA.Additionally,the fibrinogen-AArg binding model had the best docking scores,and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them.The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay,as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture.AArg@NPs had a strong selectivity for,and specificity to,fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.
基金We acknowledge financial support from grants MYRG2014-00093-FHS,MYRG 2015-00036-FHS,MYRG2016-00110-FHS and MYRG2018-00081-FHS from the University of Macao in Macao and grants FDCT 0011/2018/A1 and FDCT 025/2015/A1 from the Macao government.
文摘Photoacoustic imaging(PAI)is a hybrid imaging method based on photoacoustic(PA)effects,which is able to capture the structure,function,and molecular information of biological tissues with high resolution.To date,therapeutic techniques under the guidance of PAI have provided new strategies for accurate diagnosis and precise treatment of tumors.In particular,conjugated polymer nanoparticles have been extensively inspected for PA-based cancer theranostics largely due to their superior optical properties such as tunable spectrum and large absorption coefficient and their good biocompatibility,and abundant functional groups.This mini-review mainly focuses on the recent advances toward the development of novel conjugated polymer nanoparticles for PA-based multimodal imaging and cancer photothermal therapy.
基金the National Natural Science Foundation of China(Nos.22174070 and 22205115)Natural Science Foundation of Jiangsu Province(No.BK20230060)+4 种基金Natural Science Foundation of Jiangsu University(No.21KJB150022)the Research startup fund of NJUPT(No.NY220149)Natural Science Foundation of NJUPT(No.NY221088)the Project of State Key Laboratory of Organic Electronics and Information Displays,Nanjing University of Posts and Telecommunications(Nos.GZR2022010012 and GZR2023010022)the Synergetic Innovation Center for Organic Electronics and Information Displays for the financial support.
文摘Semiconducting polymer nanoparticles(SPNs)have shown great promise in second near-infrared window(NIR-II)phototheranostics.However,the issue of long metabolic time significantly restricts the clinical application of SPNs.In this study,we rationally designed a biodegradable SPN(BSPN50)for NIR-II fluorescence imaging-guided photodynamic therapy(PDT).BSPN50 is prepared by encapsulating a biodegradable SP(BSP50)with an amphiphilic copolymer F-127.BSP50 is composed of NIR-II fluorescent diketopyrrolopyrrole(DPP)segment and degradable poly(phenylenevinylene)(PPV)segment with the ratio of 50/50.BSPN50 has both satisfactory degradability under myeloperoxidase(MPO)/hydrogen peroxide(H_(2)O_(2))and NIR-II fluorescence emission upon 808 nm laser excitation.Furthermore,BSPN50 shows good photodynamic efficacy under 808 nm laser irradiation.BSPN50 shows a faster degradation rate than BSPN100 which has no PPV segment both in vitro and in vivo.In addition,BSPN50 can effectively diagnose tumor via NIR-II fluorescence imaging and inhibit the tumor growth by PDT.Thus,our study provides a rational approach to construct biodegradable nanoplatforms for efficient tumor NIR-II phototheranostics.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC)under grant no.21972054.
文摘Chemically fueled dissipative self-assembly paves the way for innovative materials with lifelike properties and functions.Achievement of nonequilibrium systems with biocompatibility and biofunctions remains an important and challenging task.Here,we present biocompatible chemically fueled transient polymer nanoparticles and their applications in temporally programmable in vivo imaging.The lifetime of the transient polymer nanoparticles can be tuned by varying the concentration of polymer,adenosine triphosphate,and phosphatase.Moreover,the transient assembly of polymer nanoparticles can be paused for storage and then subsequently restored.The transient polymer nanoparticles exhibit good biocompatibility.Notably,we implement in vivo imaging in a temporally programmable fashion by using an autonomous fluorescence modulator of transient nanoparticles assembled from polymers with a fluorescence moiety.The results in this work provide a valuable way to achieve nonequilibrium self-assembly of synthetic systems with good biocompatibility and programmable biofunctions,accelerating innovative developments of nonequilibrium soft biomaterials.
基金supported by the National Natural Science Foundation of China(Nos.82201135,22174070,and 61905122)Nanjing Clinical Research Center for Oral Diseases(No.2019060009)+2 种基金General project of Jiangsu Provincial Health Commission(No.M2021077)Scientific research fund of Jiangsu Medical Association(No.SYH-3201150-0007(2021002))the Natural Science Foundation of Jiangsu Province(No.BK20190735).
文摘Oral squamous cell carcinoma(OSCC)is the most common malignant tumor of the oral and maxillofacial region.Due to its unique location,earlier and more accurate diagnosis and more minimally invasive treatment of OSCC is of major importance.Herein,gadolinium-containing semiconductor polymer nanoparticles(SPN-Gd)were designed and prepared.The nanoparticles consist of a near-infrared(NIR)absorption semiconductor polymer(PCPDTBT)served as fluorescence signal source and a photothermal conversion agent(PTA)and a gadolinium-grafted triblock amphiphilic copolymer(F127-DTPA-Gd)served as a magnetic resonance imaging(MRI)contrast agent and nanocarrier.The experiments in vivo showed that SPN-Gd could act as an MRI contrast agent and optical image agent with a long retention time,and it had a significant inhibiting effect on tumors of OSCC mice model through photothermal therapy(PTT).Thus our study provides a simple nanotheranostic platform composed of two components for efficient MR/fluorescence dual-modal imaging-guided PTT.
基金This work was supported by the National Natural Science Foundation of China (No.21334001 and No.91127030).
文摘Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-rpoly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2- (dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre- pared simply and emciently by Glaser-coupling of the pendant alkynes in the PMAEP-r- PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by aggregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpartieles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.
基金This work was supported by the National Natural Science Foundation of China (NSFC) (61107017, 81301318), the Start-up grant (M4080141.040) from Nanyang Technological University, Tier 1 Academic Research Funds (M4010360.040 RG29/10) from Singapore Ministry of Education and partially from the Singapore Ministry of Education under a Tier 2 Research Grant MOE2010-T2-2-010 (4020020.040 ARC2/11) and the grant from the Shenzhen Basic Research Project (JC201005280391A)
文摘We have developed aggregation-induced emission (AIE) dye loaded polymer nanoparticles with deep-red emission for siRNA delivery to pancreatic cancer cells. Two US Food and Drug Administration (FDA) approved surfactant polymers, Pluronics F127 and PEGylated phospholipid, were used to prepare the dye-loaded nanoparticle formulations and they can be used as nanovectors for gene silencing of mutant K-ras in pancreatic cancer cells. The successful transfection of siRNA by the developed nanovectors was confirmed by the fluorescent imaging and quantified through flow cytometry. Quantitative real time polymerase chain reaction (PCR) indicates that the expression of the mutant K-ras oncogene from the MiaPaCa-2 pancreatic cancer cells has been successfully suppressed. More importantly, our in vivo toxicity study has revealed that both the nanoparticle formulations are highly biocompatible in BALC/c mice. Overall, our results suggest that the AIE dye-loaded polymer nanoparticle formulations developed here are suitable for gene delivery and have high potential applications in translational medicine research.
基金the Major Project (XK100100433,XK100100540)for Polymer Chemistry and Physics Subject Construction from Beijing Municipal Education Commission(BMEC),for financial support to this work
文摘Polymer nanoparticles with dendrimer-Ag shell were prepared and their application in catalytic reduction of 4-nitrophenol (4-NP) was investigated. Cross-linked polystyrene (PS) microspheres were prepared through dispersion copolymerization of styrene, acrylic acid and crosslinking monomer 1, 2- divinylbenzene. PS microspheres with average size of 450 nm and narrow size distribution were used as support for the immobilization of dendrimer-Ag shell, The polyamidoamine (PAMAM) dendrimer shell was successively grafted onto the surface ofPS microspheres through repetitive Michael addition reaction of methyl acrylate (MA) and amidation of the obtained esters with large excess of ethylenediamine (EDA). Silver nanoparticles were formed directly inside the PAMAM shell through reduction with NaBH4. The resulting PS@PAMAM-Ag nanopartides were packed in a stainless steel column and used successfully for catalytic reduction of 4-NP. This technique for packing catalytic polymer particles in a column could imnrove the efficiency of using the metal catalyst and the tedious seuaration in catalytic reaction.
基金supported by the Fun dame ntal Research Funds for the Central Universities(China)(No.0500219216)the National Natural Science Foundation of China(No.21144006).
文摘The intramolecular cross-linking of single polymer chains can form single-chain nanoparticles(SCNPs),which have many applications.In this study,styrenic copolymers with pendent triphenylphosphine as the coordination site for platinum ions(Pt(Ⅱ))and benzocyclobutene as the latent reactive groups are synthesized.Triphenylphosphine groups in the chains can coordinate Pt(Ⅱ)and aid slight single-chain folding in dilute solution.The intramolecular cross-linking caused by the ring-open reaction of benzocyclobutene completes the single-chain collapse and forms stable SCNPs in dilute solution.Pt(Ⅱ)embedded in SCNPs can be further reduced to platinum atoms(Pt(0)).Pt(0)steadily and atomically dispersed in SCNPs exhibits better catalytic properties than normal polymer carried platinum particles do for the reduction of p-nitrophenol to p-aminophenol.
基金supported by the National Natural Science Foundation of China(21674081)Fundamental Research Funds for the Central Universities(22120180109)
文摘Noninvasive ultrasound is more convenient and easily accessible for controlled drug delivery of polymeric nanoparticles than many other stimuli.However,controlled ultrasound responsiveness is rather challenging as the mechanism is still unclear.In this article,we disclose the origin and the key regulating factors of ultrasound responsiveness of block copolymer nanoparticles such as simple vesicles,framboidal vesicles,lamellae,beads-like micelles and complex micelles that are self-assembled from a range of poly(ethylene oxide)-b-polymethacrylates based model copolymers.We discover that the intrinsic ultrasound responsiveness of block copolymer nanoparticles thermodynamically originates from their metastable states,and its expression kinetically relates to the mobility of the hydrophobic segments of block copolymers.Specifically,the self-assembly temperature(Ts) that has been usually considered as a less important factor in most of macromolecular self-assembly systems,and the solvents for the selfassembly are two dominant regulating factors of the ultrasound responsiveness because they determine the thermodynamic state(metastable or stable) of nanoparticles.For example,simple vesicles with good or excellent ultrasound responsiveness can be prepared in THF/water when the Tsis around or slightly below the glass transition temperature(Tg) of the hydrophobic segment of the block copolymer because the combination of this solvent with this Tsfacilitates the formation of metastable vesicles.By contrast,thermodynamically stable solid nanoparticles such as spherical micelles and lamellae(mainly formed in DMF/water)are not sensitive to ultrasound at all,neither are the vesicles in THF/water at stable states when the Tsis highly above Tg.In addition,we unravel that the responsive rate is highly dependent on the sonication temperature(Tu),i.e.,the higher the Tu,the faster the rate.Overall,the above important findings provide us with a fresh insight into how to design ultrasound-responsive nanoparticles and may open new avenues for synthesizing translational noninvasively responsive drug carriers.
文摘<strong>Background: </strong>Recent decades witnessed a significant growth in terms of phytocompounds based therapeutics, extensively explored for almost all types of existing disorders. They have also been widely investigated in Neurodegenerative disorders (NDDs) and Chlorogenic acid (CGA), a polyphenolic compound having potential anti-inflammatory and anti-oxidative properties, emerged as a promising compound in ameliorating NDDs. Owing to its poor stability, bioavailability and release kinetics, CGA needed a suitable nanocarrier based pharmaceutical design for targeting NDDs. <strong>Objective: </strong>The current study is aimed at the <em>in-silico</em> validation of CGA as an effective therapeutic agent targeting various NDDs followed by the fabrication of polymeric nanoparticles-based carrier system to overcome its pharmacological limitations and improve its stability. <strong>Methods:</strong> A successful <em>in-silico</em> validation using molecular docking techniques along with synthesis of CGA loaded polymeric nanoparticles (CGA-NPs) by ionic gelation method was performed. The statistical optimisation of the developed CGA-NPs was done by Box Behnken method and then the optimized formulation of CGA-NPs was characterised using particle size analysis (PSA), Transmission electron microscopy (TEM), Fourier Transform Infrared spectroscopy (FTIR) along with in-vitro release kinetics analysis.<strong> Results & Conclusion:</strong> The results attained exhibited average particle size of 101.9 ± 1.5 nm, Polydispersibility (PDI) score of 0.065 and a ZP of <span style="white-space:nowrap;">−</span>17.4 mV. On a similar note, TEM results showed a size range of CGA-NPs between 90 - 110 nm with a spherical shape of NPs. Also, the data from in-vitro release kinetics showed a sustained release of CGA from the NPs following the first-order kinetics suggesting the appropriate designing of nanoformulation.
文摘Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease with worldwide distribution caused by Betaarterivirus suid (PRRSV). The virion has great genetic and antigenic variability with a marked increase in virulence. Vaccines tested to date have been of little use in controlling the problems caused by PRRSV, so the present study was conceived to evaluate the antiviral effect of polymeric nanoparticles (PNPs) made with glycyrrhizic acid (GA). Recent work has proven that this nanoparticle system is stable. These nanoparticles have good GA carrying capacity, a size < 250 nm, a spherical morphology, and a wide safety range. The integrity of cell morphology can be maintained for up to 72 h. The antiviral effect of this nanoparticle system was tested in cultures of MARC-145 cells in pre- and coinfection assays with PRRSV to evaluate changes in cell morphology and effects on cell viability. The use of PNPsGA with the real-time quantitative polymerase chain reaction (RT-qPCR) decreased viral infection by 38% in 3 amplification cycles. These results suggest that this system has an antiviral effect against PRRSV under the study conditions established.
基金This work was supported by National Natural Science Foundation of China(Nos.61805287 and 62175262)The Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology,No.2021-skllmd-10)+1 种基金The Open Sharing Fund for Large-scale Instruments and Equipment of Central South University(CSUZC202218),Fundamental Research Funds for the Central South Universities(Nos.2020CX021,2020zzts387,and 2020zzts404)Key R&D plan of Hunan Province(No.2022SK2101).
文摘Near infrared(NIR)fluorescence imaging guided photodynamic therapy(PDT)is a technique which has been developed in many clinical trials due to its advantage of real-time optical monitoring,specific spatiotemporal selectivity,and minimal invasiveness.For this,photosensitizers with NIR fluorescence emission and high^(1)O_(2)generation quantum yield are highly desirable.Herein,we designed and synthesized a"donor-acceptor"(D-A)structured semiconductor polymer(SP),which was then wrapped with an amphiphilic compound(Pluronic■F127)to prepare water-soluble nanoparticles(F-SP NPs).The obtained F-SP NPs exhibit good water solubility,excellent particle size stability,strong absorbance at deep red region,and strong NIR fluorescent emission characteristics.The maximal mass extinction coe±cient and fluorescence quantum yield of these F-SPs were calculated to be 21.7 L/(g·cm)and 6.5%,respectively.Moreover,the^(1)O_(2)quantum yield of 89%for F-SP NPs has been achieved under 635 nm laser irradiation,which is higher than Methylene Blue,Ce6,and PpIX.The outstanding properties of these F-SP NPs originate from their unique D-A molecular characteristic.This work should help guide the design of novel semiconductor polymer for NIR fluorescent imaging guided PDT applications.
基金This work was financially supported by the 973 Program(Grant No.2009CB930300)National Natural Science Foundation of China(No.81273449).
文摘In this study,a polymeric lipid nanoparticle(NP)(simplified as Lipid NP)was reported as a promising oral vaccine delivery system.The Lipid NPs composed of a hydrophobic polymeric poly(D,L-lactide-co-glycolide)(PLGA)core and a surface coating of lipid monolayer.Membrane emulsification technique was used to obtain uniform-sized Lipid NPs.Ovalbumin(OVA)was used as a model vaccine.Compared with the pure PLGA NPs,the Lipid NPs achieved higher loading capacity(LC)and entrapment efficiency(EE)for the encapsulated OVA.An in vitro oral release profile showed that the OVA-Lipid NPs were with lower initial burst and could protect the loaded OVA from the harsh gastrointestinal(GI)environment for a long time.In addition,a human microfold cell(M-cell)transcytotic assay demonstrated that due to a lipid layer structure on the particle surface,the Lipid NPs showed higher affinity to the M-cells.Since the M-cell in the intestinal epithelium played an important role in particle transportation as well as intimately associated with the underlying immune cells,the OVA-Lipid NPs effectively induced mucosal and humoral immune responses.
基金supported by Comissao de Aperfeicoamento de Pessoal do Nível Superior(CAPES)in the form of scholarship for LGM
文摘Melatonin is a natural hormone and with the advancement of age its production declines and thereby may result in some neurological disorders. Exogenous administration of melatonin has been suggested as a neuroprotective agent. Due to its low oral bioavailability, the loading of melatonin in polymeric nanoparticles could be an important tool to effectively use exogenous melatonin. The quantification of the incorporated drug within polymeric nanoparticles is an important step in nanoparticles characterization. An analytical method using high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) was developed and validated for melatonin determination in poly (lactic acid) nanoparticles obtained by a single emulsion-solvent evaporation technique. The melatonin in vitro release profile also was determined by the HPLC method. Mobile phase consisted of acetonitrile: water (65:35, v/v) pumped at a flow rate of 0.9 mL/min, in the isocratic mode and PDA detector was set at 220 nm. The method was validated in terms of the selectivity, linearity, precision, accuracy, robustness, limits of detection and quantification. Analytical curve was linear over the concentration range of 10-100 ~tg/mL, and limits of detection and quantification were 25.9 ng/mL and 78.7 ng/mL, respectively. The mean recovery for melatonin was 100.47% (RSD = 1.25%, n = 9). In the intra- and inter- assay, the coefficient of variation was less than 2%. Robustness was proved performing changes in mobile phase, column temperature and flow rate. The method was suitable for the determination of melatonin encapsulation efficiency in poly(lactic acid) nanopartieles and for the evaluation of melatonin in vitro release profile.
文摘In order to increase antibacterial abilities and avoid the aggregation of nanoparticle, Ag- ZnO nanocomposites were studied in the network structure which contains bonds, and these bonds are formed by hydrolysis reaction between Ti(TBOU)4(TBOT) and the water that in Persimmon tannin solution. The size and morphology of Ag-ZnO nanocompos:tes were investigated by scanning electron microscopy (SEM) and field emission scanning electron microscopy(FE-SEM). The antibacterial properties of nanocomposites were examined by minimal bactericidal concentration(MBC). Results showed that this kind of antibacterial nanocomposites composites(ANPs) have excellent antibacterial abilities and without aggregation.
基金financially supported by the Ministry of Science and Technology of China(No.2022YFE0110200)the Natural Science Foundation of Hunan Province of China(No.2021JJ30680)the National Natural Science Foundation of China(Nos.52203198,52025035 and 52103195)。
文摘Combretastatin A4 phosphate(CA4P)is a potent vascular disrupting agent with good water solubility.However,it is only effective at high doses,which decreases clinical applicability.Herein,we designed stable CA4P polymeric nanoparticles(CA4P NPs)consisting of various cholesterol derivatives,and with a drug loading efficacy of 93%.The nanoparticles released CA4P in a sustained manner and achieved a 72%inhibition rate in the murine H22 liver tumor model,which was about 2.9-fold higher than that of free CA4P(24.6%).Furthermore,the carrier components of CA4P NPs were metabolized to arginine,cholesterol,ethanol and poly(ethylene glycol)in vivo;therefore,the CA4P NPs are safe and have significant potential for clinical translation.
基金The financial support from the National Natural Science Foundation of China(Nos.22201276,22131010,52021002)the Fundamental Research Funds for the Central Universities(No.WK2060000012)is gratefully acknowledged.
文摘Cyclic polymers are a class of polymers that feature endless topology,and the synthesis of cyclic polymers has attracted the attention of many researchers.Herein,cyclic polymers were efficiently constructed by self-folding cyclization technique at high concentrations.Linear poly((oligo(ethylene glycol)acrylate)-co-(dodecyl acrylate))(P(OEGA-co-DDA))precursors with different ratios of hydrophilic and hydrophobic moieties were synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization using a bifunctional chain transfer agent with two anthryl end groups.The amphiphilic linear precursors underwent the self-folding process to generate polymeric nanoparticles in water.By irradiating the aqueous solution of the nanoparticles with 365 nm UV light,cyclic polymers were synthesized successfully via coupling of anthryl groups.The effects of the ratios of hydrophilic and hydrophobic moieties in linear P(OEGA-co-DDA)copolymers and polymer concentration on the purity of the obtained cyclic polymers were explored in detail via ^(1)H nuclear magnetic resonance(^(1)H NMR),dynamic light scattering(DLS),UV‒visible(vis)analysis,three-detection size exclusion chromatography(TD-SEC)and transmission electron microscopy(TEM).It was found that by adjusting the content of the hydrophilic segments in linear precursors,single chain polymeric nanoparticles(SCPNs)can be generated at high polymer concentrations.Therefore,cyclic polymers with high purity can be constructed efficiently.This method overcomes the limitation of traditional ring-closure method,which is typically conducted in highly dilute conditions,providing an efficient method for the scalable preparation of cyclic polymers.