期刊文献+
共找到1,913篇文章
< 1 2 96 >
每页显示 20 50 100
Breaking Through Bottlenecks for Thermally Conductive Polymer Composites:A Perspective for Intrinsic Thermal Conductivity,Interfacial Thermal Resistance and Theoretics 被引量:20
1
作者 Junwei Gu Kunpeng Ruan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期118-126,共9页
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va... Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites. 展开更多
关键词 thermally conductive polymer composites Intrinsic thermal conductivity Interfacial thermal resistance thermal conduction models thermal conduction mechanisms
下载PDF
Thermal conductivity model of filled polymer composites 被引量:9
2
作者 Ming-xia Shen Yin-xin Cui Jing He Yao-ming Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第5期623-631,共9页
Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial th... Theoretical and empirical models for predicting the thermal conductivity of polymer composites were summarized since the 1920s.The effects of particle shape,filler amount,dispersion state of fillers,and interfacial thermal barrier on the thermal conductivity of filled polymer composites were investigated,and the agreement of experimental data with theoretical models in literatures was discussed.Silica with high thermal conductivity was chosen to mix with polyvinyl-acetate (EVA) copolymer to prepare SiO2/EVA co-films.Experimental data of the co-films' thermal conductivity were compared with some classical theoretical and empirical models.The results show that Agari's model,the mixed model,and the percolation model can predict well the thermal conductivity of SiO2/EVA co-films. 展开更多
关键词 polymer matrix composites thermal conductivity mathematical models polyvinyl acetates SILICA filled polymers.
下载PDF
Adaptive Neuro-Fuzzy Inference System for Prediction of Effective Thermal Conductivity of Polymer-Matrix Composites
3
作者 Rajpal Singh Bhoopal Ramvir Singh Pradeep Kumar Sharma 《Modeling and Numerical Simulation of Material Science》 2012年第3期43-50,共8页
In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid ... In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS is based on neuro-fuzzy model, trained with data collected from various sources of literature. ETC is predicted using ANFIS with volume fraction and thermal conductivities of fillers and matrixes as input parameters, respectively. The predicted results by ANFIS are in good agreements with experimental values. The predicted results also show the supremacy of ANFIS in comparison with other earlier developed models. 展开更多
关键词 NEURO-FUZZY INFERENCE System Effective thermal conductivity polymer composites VOLUME FRACTION Fuzzy INFERENCE Systems
下载PDF
Enhancing the thermal conductivity of polymer-assisted deposited Al_2O_3 film by nitrogen doping 被引量:2
4
作者 黄江 张胤 +3 位作者 潘泰松 曾波 胡国华 林媛 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期372-376,共5页
Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown fi... Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3 (AION) thin films on Si(100) substrates. The chemical compositions, crystallinity, and thermal conductivity of the as-grown films have been characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and 3-omega method, respectively. Amorphous and polycrystalline Al2O3 and AlON thin films have been formed at 700 ℃ and 1000 ℃. The thermal conductivity results indicated that the effect of nitrogen doping on the thermal conductivity is determined by the competition of the increase of Al-N bonding and the suppression of crystallinity. A 67% enhancement in thermal conductivity has been achieved for the samples grown at 700 ℃, demonstrating that the nitrogen doping is an effective way to improve the thermal performance of polymer-assisted-deposited Al2O3 thin films at a relatively low growth temperature. 展开更多
关键词 nitrogen-doped Al2O3 thin film thermal conductivity polymer-assisted deposition
下载PDF
Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room‑Temperature Self‑Healing Capacity 被引量:7
5
作者 Huitao Yu Can Chen +4 位作者 Jinxu Sun Heng Zhang Yiyu Feng Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期194-207,共14页
Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects.However,in view of the complexity of composite structure and composition,its self-heal is faci... Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects.However,in view of the complexity of composite structure and composition,its self-heal is facing challenges.In this article,supramolecular effect is proposed to repair the multistage structure,mechanical and thermal properties of composite materials.A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester(PBA)–polydimethylsiloxane(PDMS)were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization.Then,by introducing the copolymer into a folded graphene film(FGf),a highly thermally conductive composite of PBA–PDMS/FGf with self-healing capacity was fabricated.The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA–PDMS could completely self-heal at room temperature in 10 min.Additionally,PBA–PDMS/FGf exhibits a high tensile strength of 2.23±0.15 MPa at break and high thermal conductivity of 13±0.2 W m^(−1)K^(−1);of which the self-healing efficiencies were 100%and 98.65%at room temperature for tensile strength and thermal conductivity,respectively.The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules,as well as polymer molecule and graphene.This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future. 展开更多
关键词 Carbon/polymer composites Self-healing capacity High thermal conductivity Molecular simulation Room temperature
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
6
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/SiC composites Finite element analyses Multi-scale modeling thermal conductivity
下载PDF
Evaluation of Fire-Performance by Cone-Calorimeter Tests and Thermal Conductivity of Polymer-Modified Mortars and Various Concretes
7
作者 Sanjay PAREEK 《材料科学与工程(中英文B版)》 2017年第2期81-88,共8页
下载PDF
The Development of Thermal Conductive Polymer Composites for Heat Sink 被引量:1
8
作者 Yeo-Seong Yoon Mee-Hye Oh Ah-Yeong Kim Namil Kim 《Journal of Chemistry and Chemical Engineering》 2012年第6期515-519,共5页
The thermal and mechanical properties of the polyamide 6/boron nitride and polyphenylene sulfide/graphite composites have been investigated as a function of composition and size of fillers. The addition of highly ther... The thermal and mechanical properties of the polyamide 6/boron nitride and polyphenylene sulfide/graphite composites have been investigated as a function of composition and size of fillers. The addition of highly thermal conductive h-BN and graphite gives rise to large increase (about 2 times) of thermal conductivity of individual polymer. In PPS/graphite system, the higher conductivity value was obtained when smaller graphites were added. Meanwhile, the tensile and flexural strength are reduced upon increasing filler loading. 展开更多
关键词 polymer composites thermal conductivity PA6 (polyamide 6) PPS (polyphenylene sulfide) h-BN (boron nitride) graphite.
下载PDF
Preparation technologies for polymer composites with high-directional thermal conductivity:A review
9
作者 Yanshuai Duan Huitao Yu +2 位作者 Fei Zhang Mengmeng Qin Wei Feng 《Nano Research》 SCIE EI CSCD 2024年第11期9796-9814,共19页
With the rapid development of science and technology,electronic devices are moving towards miniaturization and integration,which brings high heat dissipation requirements.During the heat dissipation process of a heati... With the rapid development of science and technology,electronic devices are moving towards miniaturization and integration,which brings high heat dissipation requirements.During the heat dissipation process of a heating element,heat may spread to adjacent components,causing a decrease in the performance of the element.To avoid this situation,the ability to directionally transfer heat energy is urgently needed.Therefore,thermal interface materials(TIMs)with directional high thermal conductivity are more critical in thermal management system of electronic devices.For decades,many efforts have been devoted to the design and fabrication of TIMs with high-directional thermal conductivity.Benefiting from the advantage in feasibility,low-cost and scalability,compositing with thermal conductive fillers has been proved to be promising strategy for fabricating the high-directional thermal conductive TIMs.This review summarizes the present preparation technologies of polymer composites with high-directional thermal conductivity based on structural engineering of thermal conductive fillers,focusing on the manufacturing process,mechanisms,achievements,advantages and disadvantages of different technologies.Finally,we summarize the existing problems and potential challenges in the field of directional high thermal conductivity composites. 展开更多
关键词 preparation technologies directional networks polymer composites high-directional thermal conductivity
原文传递
Efficient Preconstruction of Three‑Dimensional Graphene Networks for Thermally Conductive Polymer Composites 被引量:11
10
作者 Hao‑Yu Zhao Ming‑Yuan Yu +3 位作者 Ji Liu Xiaofeng Li Peng Min Zhong‑Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期72-111,共40页
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ide... Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites. 展开更多
关键词 Graphene networks thermal conductivity thermal interface materials Phase change composites Anisotropic aerogels
下载PDF
Boron nitride silicone rubber composite foam with low dielectric and high thermal conductivity
11
作者 Shuilai Qiu Hang Wu +1 位作者 Fukai Chu Lei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期224-230,共7页
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b... Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN. 展开更多
关键词 Foam composites Dielectric properties thermal conductivity Mechanical properties Flame retardant
下载PDF
Simultaneously enhanced thermal conductivity and mechanical performance of carbon nanotube reinforced ZK61 matrix composite
12
作者 Fanjing Meng Wenbo Du +3 位作者 Xian Du Baohong Zhu Ke Liu Shubo Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2756-2765,共10页
Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductiv... Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductivity of Mg alloys,adding carbon nanotube(CNT)combined with aging treatment is proposed in this work,i.e.fabricating the D-CNT(a kind of dispersed CNT)reinforced ZK61 matrix composite via powder metallurgy,and conducting aging treatment to the composite.Results indicate the as-aged ZK61/0.6 wt.%D-CNT composite achieved an excellent thermal conductivity of 166 W/(mK),exhibiting 52.3%enhancement in comparison with matrix,as well as tensile yield strength of 321 MPa,ultimate tensile strength of 354 of MPa,and elongation of 14%.The simultaneously enhanced thermal conductivity and mechanical performance are mainly attributed to:(1)the embedded interface of the D-CNT with matrix and(2)the coherent interface of precipitates with matrix.It is expected the current work can provide a clue for devising Mg matrix composites with integrated structural and functional performances,and enlarge the current restricted applications of Mg alloys. 展开更多
关键词 Mg matrix composite Carbon nanotube INTERFACE thermal conductivity Mechanical performance
下载PDF
Thermal conductivity of natural rubber nanocomposites with hybrid fillers 被引量:3
13
作者 Junping Song Xiteng Li +3 位作者 Kaiyan Tian Lianxiang Ma Wei Li Shichune Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第4期928-934,共7页
Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H2O2) and distilled... Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H2O2) and distilled water(H2O). The functional groups on the surface of CNTs, changes in nanotube structure and morphology were characterized by Fourier transform infrared spectroscopy(FT-IR), Raman Spectroscopy, and transmission electron microscopy(TEM). It shows that hydroxyl(OH·) is successfully introduced. The surface defects of modified CNTs were obviously higher than those of original CNTs, and the degree of agglomeration was greatly reduced. Thermal conductivity of the composites was tested by protection heat flow meter method. Compared with unmodified CNTs/CB filling system, the thermal conductivity of hybrid composites is improved by an average of 5.8% with 1.5 phr(phr is parts per hundred rubber) of hydroxyl CNTs and 40 phr of CB filled. A three-dimensional heat conduction network composed of hydroxyl CNTs and CB, as observed by TEM, contributes to the good properties. Thermal conductivity of the hybrid composites increases as temperature rises. The mechanical properties of hybrid composites are also good with hydroxyl CNTs filled nanocomposites;the tensile strength, 100% and 300% tensile stress are improved by 10.1%, 22.4% and 26.2% respectively. 展开更多
关键词 Modified CARBON NANOTUBE CARBON black HYBRID FILLER Natural rubber thermal conductivity
下载PDF
Investigation on the Thermal Conductivity of 3-Dimensional and 4-Directional Braided Composites 被引量:24
14
作者 Liu Zhenguo Zhang Haiguo Lu Zixing Li Diansen 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期327-331,共5页
It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On th... It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On the basis of new microstructure model of braided composites proposed recently, the model of FEM calculation for thermal conductivity of 3-dimennsional and 4-directional braided composites is set up in this paper. The curves of coefficient of effective thermal conductivity versus fiber volume ratio and interior braiding angle are obtained. Furthermore, comparing the results of FEM with the available experimental data, the reasonability and veracity of calculation are confirmed at the same time. 展开更多
关键词 3-dimennsional and 4-directional braided composites thermal conductivity FEM
下载PDF
Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings 被引量:9
15
作者 LIANG Xuebing JIA Chengchang +1 位作者 CHU Ke CHEN Hui 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期544-549,共6页
The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were ... The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites. 展开更多
关键词 metallic matrix composites COATINGS diamonds thermal conductivity interfacial thermal conductance
下载PDF
Microstructure and thermal conductivity of copper matrix composites reinforced with mixtures of diamond and SiC particles 被引量:14
16
作者 Han, Yuanyuan Guo, Hong +3 位作者 Yin, Fazhang Zhang, Ximin Chu, Ke Fan, Yeming 《Rare Metals》 SCIE EI CAS CSCD 2012年第1期58-63,共6页
The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle v... The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model. 展开更多
关键词 diamond hybrid SiC/Cu composite MICROSTRUCTURE thermal conductivity differential effective medium
下载PDF
Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique 被引量:10
17
作者 Hui Chen Cheng-chang Jia +2 位作者 Shang-jie Li Xian Jia Xia Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期364-371,共8页
Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding ... Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification. 展开更多
关键词 metallic matrix composites diamonds copper alloys interfacial bonding thermal conductivity
下载PDF
3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness 被引量:15
18
作者 Pengfei Liu Xiaofeng Li +4 位作者 Peng Min Xiyuan Chang Chao Shu Yun Ding Zhong-Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期13-27,共15页
Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their... Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their application as thermal interface materials.Herein,lamellarstructured polyamic acid salt/graphene oxide(PAAS/GO)hybrid aerogels are constructed by bidirectional freezing of PAAS/GO suspension followed by lyophilization.Subsequently,PAAS monomers are polymerized to polyimide(PI),while GO is converted to thermally reduced graphene oxide(RGO)during thermal annealing at 300℃.Final graphitization at 2800℃ converts PI to graphitized carbon with the inductive effect of RGO,and simultaneously,RGO is thermally reduced and healed to high-quality graphene.Consequently,lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time,and its superior through-plane thermal conduction capacity results from its vertically aligned and closely stacked high-quality graphene lamellae.After vacuum-assisted impregnation with epoxy,the resultant epoxy composite with 2.30 vol% of graphene exhibits an outstanding through-plane thermal conductivity of as high as 20.0 W m^−1 K^−1,100 times of that of epoxy,with a record-high specific thermal conductivity enhancement of 4310%.Furthermore,the lamellar-structured graphene aerogel endows epoxy with a high fracture toughness,~1.71 times of that of epoxy. 展开更多
关键词 Anisotropic aerogels GRAPHENE thermal conductivity Epoxy composites Fracture toughness
下载PDF
Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration 被引量:6
19
作者 Hui Chen Cheng-chang Jia Shang-jie Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第2期180-186,共7页
Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as ... Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as a function of sintering parameters (temperature, pressure, and time). The improvement in interfacial bonding strength and the maximum thermM conductivity of 750 W/(m.K) were achieved at the optimal sintering parameters of 1200℃, 6 GPa and 10 min. It is found that the thermal conductivity of the composites depends strongly on sintering pressure. When the sintering pressure is above 6 GPa, the diamond skeleton is detected, which greatly contributes to the excellent thermal conductivity. 展开更多
关键词 metallic matrix composites particle reinforced composites COPPER diamonds INFILTRATION microstructuralevolution thermal conductivity
下载PDF
Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:6
20
作者 Jun-hui Nie Cheng-chang Jia +3 位作者 XianJia Yi Li Ya-feng Zhang Xue-bing Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期446-452,共7页
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were... Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l. 展开更多
关键词 metallic matrix composites (MMCs) carbon nanotubes TUNGSTEN copper spark plasma sintering thermal conductivity
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部