期刊文献+
共找到440篇文章
< 1 2 22 >
每页显示 20 50 100
The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+transportation 被引量:8
1
作者 Zhichuan Shen Yifeng Cheng +3 位作者 Shuhui Sun Xi Ke Liying Liu Zhicong Shi 《Carbon Energy》 CAS 2021年第3期482-508,共27页
Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cyc... Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cycle life;therefore,ASSLBs have been identified as promising candidates for next-generation safe and stable high-energy-storage devices.The design and fabrication of solid-state electrolytes(SSEs)are vital for the future commercialization of ASSLBs.Among various SSEs,solid polymer composite electrolytes(SPCEs)consisting of inorganic nanofillers and polymer matrix have shown great application prospects in the practice of ASSLBs.The incorporation of inorganic nanofillers into the polymer matrix has been considered as a crucial method to achieve high ionic conductivity for SPCE.In this review,the mechanisms of Li+transport variation caused by incorporating inorganic nanofillers into the polymer matrix are discussed in detail.On the basis of the recent progress,the respective contributions of polymer chains,passive ceramic nanofillers,and active ceramic nanofillers in affecting the Li+transport process of SPCE are reviewed systematically.The inherent relationship between the morphological characteristics of inorganic nanofillers and the ionic conductivity of the resultant SPCE is discussed.Finally,the challenges and future perspectives for developing high-performance SPCE are put forward.This review aims to provide possible strategies for the further improvement of ionic conductivity in inorganic nanoscale filler-reinforced SPCE and highlight their inspiration for future research directions. 展开更多
关键词 all-solid-state lithium batteries inorganic nanofillers Li+transportation solid polymer composite electrolyte
下载PDF
Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries 被引量:2
2
作者 Qingyue Han Suqing Wang +2 位作者 Wenhan Kong Bing Ji Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期257-263,共7页
By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic... By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃. 展开更多
关键词 Electrolytes polymerS Graphitic carbon nitride nanosheets composites Room temperature All-solid-state battery
下载PDF
Wear and transfer characteristics of carbon fiber reinforced polymer composites under water lubrication 被引量:1
3
作者 JIA Jun-hong CHEN Jian-min +1 位作者 ZHOU Hui-di CHEN Lei 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期332-340,共9页
The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron micros... The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron microscopy (SEM) was utilized to examine composite microstructures and modes of failure. The typical chemical states of elements of the transfer film on the stainless steel were examined with X-ray photoelectron spectroscopy (XPS). Wear testing and SEM analysis show that all the composites hold the lowered friction coefficient and show much better wear resistance under water lubricated sliding against stainless steel than those under dry sliding. The wear of composites is characterized by plastic deformation, scuffing, micro cracking, and spalling under both dry-sliding and water lubricated conditions. Plastic deformation, scuffing, micro cracking, and spalling, however, are significantly abated under water-lubricated condition. XPS analysis conforms that none of the materials produces transfer films on the stainless steel counterface with the type familiar from dry sliding, and the transfer of composites onto the counterpart ring surface is significantly hindered while the oxidation of the stainless steel is speeded under water lubrication. The composites hinder transfer onto the steel surface and the boundary lubricating action of water accounts for the much smaller wear rate under water lubrication compared with that under dry sliding. The easier transfer of the composite onto the counterpart steel surface accounts for the larger wear rate of the polymer composite under dry sliding. 展开更多
关键词 friction and wear transfer film water lubrication carbon fiber polymer composite
下载PDF
Microwave Absorption Properties of Polyester Composites Incorporated with Heterostructure Nanofillers with Carbon Nanotubes as Carriers 被引量:1
4
作者 刘海涛 刘杨 +1 位作者 王滨松 李辰砂 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期49-53,共5页
Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semicon- ductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CN... Carbonaceous nanomaterials such as carbon nanotubes (CNTs), magnetic metal nanomaterials and semicon- ductor nanomaterials are superior candidates for microwave absorbers. Taking full advantage of the features of CNTs, nanophase cobalt and nanophase zinc oxide, whose main microwave absorption mechanisms are based on resistance loss, magnetic loss and dielectric loss, we fabricate CNT/Co and CNT/ZnO heterostructure nanocom- posites, respectively. By using the CNTs, CNT/Co nanocomposites and CNT/ZnO nanocomposites as nanofillers, composites with polyester as matrix are prepared by in situ polymerization, and their microwave absorption per- formance is studied. It is indicated that the synergetic effects of the physic properties of different components in nano-heterostructures result in greatly enhanced microwave absorption performance in a wide frequency range. The absorption peak is increased, the absorption bandwidth is broadened, and the maximum peak shifts to a lower frequency. 展开更多
关键词 CO Microwave Absorption Properties of Polyester composites Incorporated with Heterostructure nanofillers with carbon Nanotubes as Carriers
下载PDF
Reinforced copper matrix composites with highly dispersed nano size TiC in-situ generated from the Carbon Polymer Dots 被引量:3
5
作者 Xiao Huang Longke Bao +8 位作者 Rui Bao Liang Liu Jingmei Tao Jinsong Wang Zhengfu Zhang Zhenhua Ge Songlin Tan Jianhong Yi Fanran Meng 《Advanced Powder Materials》 2023年第2期1-10,共10页
In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for s... In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare in-situ synthesized TiC/Cu composites.The results show that TiC nano-precipitates,having the similar particle sizes with the CPD,form at the grains interior and grain boundaries,and maintain a uniform distribution state.Compared with the matrix,0.3 wt%CPD/Cu composite displays the best strengthplastic compatibility,the ultimate tensile strength achieves 385 MPa accompanied with a corresponding elongation of 21%,owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix.The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact.This work presents a new approach for studying in-situ carbide precipitates. 展开更多
关键词 Cu matrix composites In situ generation TiC phase carbon polymer Dot Powder metallurgy
下载PDF
The Packaging Materials with Carbon Nanotube/Polymer Composites
6
作者 Shen-Li-Fu Wern-Shirang Jou Huy-Zu Cheng 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期1-2,共2页
A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The ... A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging. 展开更多
关键词 packaging materials carbon nano-tube polymer composites
下载PDF
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
7
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
Fabrication of Polymer Magnetic Nanocomposites Containing Carbon Nanoparticles Doped with Cobalt Nanoclusters and Study Their Conductivity, Self-Healing and Adhesion Properties
8
作者 G. I. Маmniashvili D. I. Gventsadze +1 位作者 L. N. Rukhadze L. A. Maisuradze 《World Journal of Condensed Matter Physics》 2020年第3期118-134,共17页
The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elabor... The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elaborated. Carbon shells provide both the protection of ferromagnetic impurities from aggressive environment and new unique properties to the hybride nanostructures. The self-assembling of magnetic clusters coated by carbon shells presents just such example which could be used in the contemporary materials, for example, in strong magnets, analytic instruments (nuclear magnetic resonance tomographs) and nanosensors. Their good conductivity, self-healing and adhesion properties were demonstrated by applying the combined action of temperature, pressure, steady and alternating magnetic fields to stimulate diffusion of magnetic nanoparticles in direction to defect sites. Due to these properties fabricated magnetic polymer nanocomposites could have perspective for potential. 展开更多
关键词 Magnetic carbon Nanopowder polymer composite Stimulated Diffusion SELF-HEALING SELF-ORGANIZATION Resistance
下载PDF
Flexible piezoresistive pressure sensor based on a graphene-carbon nanotube-polydimethylsiloxane composite
9
作者 Huifen Wei Xiangmeng Li +2 位作者 Fangping Yao Xinyu Feng Xijing Zhu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期35-44,共10页
Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here ... Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here is a simple fabrication approach involving a sensor containing microstructures replicated from a sandpaper template onto which polydimethylsiloxane containing a mixture of graphene and carbon nanotubes is spin coated. The surface morphologies of three versions of the sensor made using different grades of sandpaper are observed, and the corresponding pressure sensitivities and linearity and hysteresis characteristics are assessed and analyzed. The results show that the sensor made using 80-mesh sandpaper has the best sensing performance. Its sensitivity is 0.341 kPa-1in the loading range of 0–1.6 kPa, it responds to small external loading of 100 Pa with a resistance change of 10%, its loading and unloading response times are 0.126 and 0.2 s, respectively,and its hysteresis characteristic is ~7%, indicating that the sensor has high sensitivity, fast response, and good stability. Thus, the presented piezoresistive sensor is promising for practical applications in flexible wearable electronics. 展开更多
关键词 Piezoresistive sensor Flexible sensor GRAPHENE carbon nanotube polymer composite Microstructure
下载PDF
Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room‑Temperature Self‑Healing Capacity 被引量:8
10
作者 Huitao Yu Can Chen +4 位作者 Jinxu Sun Heng Zhang Yiyu Feng Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期194-207,共14页
Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects.However,in view of the complexity of composite structure and composition,its self-heal is faci... Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects.However,in view of the complexity of composite structure and composition,its self-heal is facing challenges.In this article,supramolecular effect is proposed to repair the multistage structure,mechanical and thermal properties of composite materials.A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester(PBA)–polydimethylsiloxane(PDMS)were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization.Then,by introducing the copolymer into a folded graphene film(FGf),a highly thermally conductive composite of PBA–PDMS/FGf with self-healing capacity was fabricated.The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA–PDMS could completely self-heal at room temperature in 10 min.Additionally,PBA–PDMS/FGf exhibits a high tensile strength of 2.23±0.15 MPa at break and high thermal conductivity of 13±0.2 W m^(−1)K^(−1);of which the self-healing efficiencies were 100%and 98.65%at room temperature for tensile strength and thermal conductivity,respectively.The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules,as well as polymer molecule and graphene.This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future. 展开更多
关键词 carbon/polymer composites Self-healing capacity High thermal conductivity Molecular simulation Room temperature
下载PDF
Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness 被引量:1
11
作者 S.AFSHIN M.H.YAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期785-804,共20页
This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The... This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The governing equations are derived based on the first shear deformation theory(FSDT). A three-phase HalpinTsai approach is used to predict the mechanical properties of the PHC. We focus our attention on the effect of the simultaneous addition of NC and CNT on the vibration and buckling analysis of the PHC beam with variable thickness. Also a comparison study is done on the sensation of three impressive parameters including CNT, NC weight fractions, and the shape factor of fillers on the mechanical properties of PHC beams,as well as fundamental frequencies of free vibrations and critical buckling load. The results show that the increase of shape factor value, NC, and CNT weight fractions leads to considerable reinforcement in mechanical properties as well as increase of the dimensionless fundamental frequency and buckling load. The variation of CNT weight fraction on elastic modulus is more sensitive rather than shear modulus but the effect of NC weight fraction on elastic and shear moduli is fairly the same. The shape factor values more than the medium level do not affect the mechanical properties. 展开更多
关键词 polymer hybrid composite(PHC) Halpin-Tsai carbon nanotube(CNT) nanoclay(NC) free vibration buckling load
下载PDF
Multifunctional characteristics of 3D printed polymer nanocomposites under monotonic and cyclic compression
12
作者 Pawan Verma Jabir Ubaid +2 位作者 Fahad Alam Suleyman Deveci S.Kumar 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期13-22,共10页
This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-stati... This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-static cyclic compression. Utilizing in-house MWCNT-engineered PPR filament feedstocks, both bulk and cellular composites were realized. The morphological features of nanocomposites were examined via scanning electron microscopy, which reveals that MWCNTs are uniformly dispersed. The uniformly dispersed MWCNTs forms an electrically conductive network within the PPR matrix, and the resulting nanocomposite shows good electrical conductivity(~10^(-1)S/cm), improved mechanical performance(modulus increases by 125% and compressive strength increases by 25% for 8 wt% MWCNT loading) and pronounced piezoresistive response(gauge factor of 27.9-8.5 for bulk samples)under compression. The influence of strain rate on the piezoresistive response of bulk samples(4 wt% of MWCNT) under compression was also measured. Under repeated cyclic compression(2% constant strain amplitude), the nanocomposite exhibited stable piezoresistive performance up to 100 cycles. The piezoresistive response under repeated cyclic loading with increasing strain amplitude of was also assessed.The gauge factor of BCC and FCC cellular composites(4 wt% of MWCNT) with a relative density of 30%was observed to be 46.4 and 30.2 respectively, under compression. The higher sensitivity of the BCC plate-lattice could be attributed to its higher degree of stretching-dominated deformation behavior than the FCC plate-lattice, which exhibits bending-dominated behavior. The 3D printed cellular PPR/MWCNT composites structures were found to show excellent piezoresistive self-sensing characteristics and open new avenues for in situ structural health monitoring in various applications. 展开更多
关键词 carbon nanotubes Nanoengineered polymer composites 3D printing Piezoresistive self-sensing Lattice structures
下载PDF
Preparation of Polymer Composite Particles by Phase Separation Followed by Suspension Polymerization
13
作者 Yoshinari Taguchi Takanori Suzuki +2 位作者 Natsukaze Saito Hiroshi Yokoyama Masato Tanaka 《Open Journal of Composite Materials》 2017年第1期1-13,共13页
The novel method for preparing the polymer composite particles has been developed. It was tried to prepare polymer composite particles composed of polystyrene and carbon black with the phase separation method followed... The novel method for preparing the polymer composite particles has been developed. It was tried to prepare polymer composite particles composed of polystyrene and carbon black with the phase separation method followed by suspension polymerization. In order to prepare the polymer composite particles with the more uniform diameter, the styrene monomer droplets containing carbon black were formed with phase separation emulsification in which ethyl alcohol and water were used as the good solvent and the poor solvent for styrene monomer, respectively. In the experiment, the surfactant species and their concentrations, the pouring velocity of water and the weight ratio of carbon black to styrene monomer were mainly changed. Water was poured at the given pouring velocity into ethyl alcohol in which styrene monomer and an initiator were dissolved and carbon black was dispersed beforehand. The spherical polymer composite particles containing carbon black were prepared with Tween 20 and Tween 80 of nonionic surfactants and the irregular polymer composite particles were prepared with PVA, SDS and Kotamine. The diameters of polymer composite particles increased with the pouring velocity of water and with the weight ratio of carbon black to styrene monomer. 展开更多
关键词 polymer composite PARTICLES Phase Separation Suspension polymerIZATION POLYSTYRENE BEADS carbon Black AMPHIPHILIC Solvent
下载PDF
Micro Model of Carbon Fiber/Cyanate Ester Composites and Analysis of Machining Damage Mechanism 被引量:3
14
作者 Haitao Liu Jie Lin +1 位作者 Yazhou Sun Jinyang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期198-208,共11页
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d... Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately. 展开更多
关键词 carbon fiber reinforced polymer compositeS MICRO simulation model MACHINING damage mechanism MILLING and observation experiment Theoretical ANALYSIS
下载PDF
Longitudinal Compressive Failure of Multiple-Fiber Model Composites for a Unidirectional Carbon Fiber Reinforced Plastic 被引量:1
15
作者 Tae Kun Jeong Masahito Ueda 《Open Journal of Composite Materials》 2016年第1期8-17,共10页
The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a re... The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers. 展开更多
关键词 polymer Matrix composite carbon Fiber Compressive Failure Kink-Band Model composite
下载PDF
Unusual Dielectric Loss Properties of Carbon Nanotube—Polyvinylidene Fluoride Composites in Low Frequency Region (100 Hz <f <1 MHz)
16
作者 Yi Zhen Juan Arredondo Guang-Lin Zhao 《Open Journal of Organic Polymer Materials》 2013年第4期99-103,共5页
Systematic investigations on the dielectric properties of multi-walled carbon nanotubes (MWNTs)-polyvinylidene fluoride (PVDF) composites with a wide MWNT concentration range (2 - 9 wt%) have been carried out. It is r... Systematic investigations on the dielectric properties of multi-walled carbon nanotubes (MWNTs)-polyvinylidene fluoride (PVDF) composites with a wide MWNT concentration range (2 - 9 wt%) have been carried out. It is revealed that the dielectric constant is increased by the addition of an appropriate amount of MWNTs at room temperature. However, when the concentration of MWNTs in the composites reaches above 5 wt%, negative dielectric constants and large dielectric loss in the composites are observed in the low frequency range. The ferroelectric CNT-PVDF polymer composites containing more than 5 wt% MWNTs have a strong dielectric absorption, which has the potential for acoustic applications. 展开更多
关键词 polymer compositeS carbon NANOTUBE Dielectric Properties
下载PDF
STUDY ON ULTRASONIC VIBRATION DRILLING IN CARBON FIBER REINFORCED POLYMERS 被引量:2
17
作者 Zhang Qixin Sun Shiyu (Harbin Institute of Technology Factory 529, Beijing)Luo Jianwei +2 位作者 Feng Youbin Ma Chengxian Tu Xifu (Harbin Institute of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第1期72-77,共17页
This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce th... This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites. 展开更多
关键词 carbon fiber reinforced polymers composites Ultrasonic vibration drilling
全文增补中
Surface Functionalized Carbon Nanofibers and Their Effect on the Dispersion and Tribological Property of Epoxy Nanocomposites
18
作者 朱艳吉 汪怀远 +1 位作者 LI Haiyan ZHU Jiahua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1219-1225,共7页
Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of... Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition. 展开更多
关键词 polymer-matrix composites carbon nanofibers surfaces functionalization friction and wear morphology
下载PDF
Flexible Polydimethylsiloxane Composite with Multi-Scale Conductive Network for Ultra-Strong Electromagnetic Interference Protection 被引量:11
19
作者 Jie Li He Sun +5 位作者 Shuang-Qin Yi Kang-Kang Zou Dan Zhang Gan-Ji Zhong Ding-Xiang Yan Zhong-Ming Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期293-306,共14页
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne... Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices. 展开更多
关键词 Flexible conductive polymer composites Silver-plated polylactide short fiber carbon nanotube Electromagnetic interference shielding Multi-scale conductive network
下载PDF
A Novel Method for Preparing Polyurethane Based Conductive Composites with Low Percolation Threshold 被引量:2
20
作者 JiWenHU MingWeiLI +2 位作者 MingQiuZHANG: GenShuiCHENG MinZhiRONG 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第8期1001-1004,共4页
A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise i... A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise in carbon black concentration the insulator-conductor transition in the emulsion blended composites occurs at 0.8-1.4vol%. In contrast, the solution blended composites exhibit drastic increase in conductivity at conducting filler fraction as high as 12.3-13.3vol%. It is demonstrated that the composites microstructure rather than chemical structure of the matrix polymer predominantly determines the electrical conduction performance of the composites. 展开更多
关键词 PERCOLATION water-borne polyurethane conductive polymer composites carbon black.
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部