The relationship between the protective performance of flexible polymer material and material parameters(elasticmodulus,viscosity coefficient)is explored,an impact collision motion equation between two bodies is estab...The relationship between the protective performance of flexible polymer material and material parameters(elasticmodulus,viscosity coefficient)is explored,an impact collision motion equation between two bodies is establishedfrom the viscoelastic material constitutive,and the relationship between the kinematic response and the materialparameters is obtained.Based on the Kelvin constitutive model,a theoretical model for impact between the pro-tective body and the protected body is established,then the dynamic response is obtained.The feasibility of themodel was verified by drop hammer experiment,and the material parameters(elastic modulus,viscosity coeffi-cient)were obtained by formula.The model is discretized and the relationship between local impact response andmaterial parameters is analyzed.The discussion results on the relationship between the impact response and theprotective material performance indicate that adjusting the elastic modulus,viscosity coefficient,and thicknessof the protective material can effectively improve protective effect.展开更多
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr...In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.展开更多
Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PT...Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PTFE fibers are used as raw material to make fiber membranes.The film is formed by crisscrossing interconnected fiber filaments and the related air permeability:tensile creep characteristics and other properties are tested.The results show that the pore size,thickness,and porosity of the film itself can affect the moisture permeability of the film.The water pressure resistance of the selected fabric is 8.5 kPa,and the moisture permeability is 7038 g/(m^(2)·24 h).展开更多
A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylen...A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry.展开更多
Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluent...Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluents contained in the materials appeared at the end of 90´s.This situation was supported by the Council of Europe in 2004 to reduce VOC emissions to zero till 2020.Solvent materials were thus largely replaced by solvent free materials from which the volatile substances are not released into the air.But pressure continued to increase,and over the past decade began to take centre stage water-based epoxy.On the Czech market solvent based material is still occasionally used,but predominant are solvent free materials.There are no commonly used materials containing wastes as fillers in new water-borne and solvent-free epoxy materials.Characteristics identification of the waste material as a potential filler is a set of properties that determine the limits of secondary raw materials or waste as a filler.This paper describes the basic characteristics which must be selected to meet the requirements,to affect negatively the workability,sedimentation,properties and behavior of the final floor system.Some materials must comply with special requirements,such as resistance to chemicals,etc.Next part of paper talks about utilization of polymer floors and their mechanical properties.展开更多
Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objective...Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization.展开更多
Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them su...Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them suitable for preparing microspheres.Inorganic materials(mainly inorganic minerals)have excellent mechanical properties and are inexpensive and easy to obtain.Through the coupling and hybridization of natural polymers and inorganic materials,they can complement each other's advantages and synergistically enhance efficiency,resulting in many excellent physical and chemical properties.Inorganic materials/natural polymer composite microspheres can be prepared by modifying natural polymers with inorganic materials through various methods such as emulsification crosslinking,solution mixing,in-situ synthesis,extrusion,etc.The application of inorganic materials/natural polymer composite microspheres in drug delivery systems has significant sustained-release effects,is safe and non-toxic,and the cost of carrier materials is relatively low,which has certain significance for the development of new drug carriers.This article reviews the recent research on the preparation,drug loading and release properties of inorganic material/natural polymer composite microspheres,analyzes the advantages and disadvantages of commonly used preparation methods,and looks forward to the development direction of composite microspheres.展开更多
Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have ...Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have been scarcely reported in the field of enhancing oil recovery(EOR).Herein,a kind of organic-based flexible JAPNs was prepared by paraffin emulsion methods.The lateral sizes of JAPNs were ranging from hundreds of nanometers to several micrometers and the thickness was about 3 nm.The organic-based nanosheets were equipped with remarkably flexible structures,which could improve their injection performance.The dispersion and interfacial properties of JAPNs were studied systematically.By modification of crosslinking agent containing multiple amino groups,the JAPNs had excellent hydro-philicity and salt resistance compared with conventional inorganic or composite nanosheets.The settling time of nanosuspension with NaCl and CaCl_(2) at a low salinity of 1000 mg/L was over 240 h.The value could also remain 124 h under the salinity of 10,000 mg/L NaCl.With the dual functionalities of Janus amphiphilic nature and nanoparticles'Pickering effect,JAPNs could change rock wettability and form emulsions as"colloidal surfactants",In particular,a new technology called optical microrheology was pioneered to explore the destabilization state of nanosuspensions for the first time.Since precipitation lagged behind aggregation,especially for stable suspension systems,the onset of the unstable behavior was difficult to be detected by conventional methods,which should be the indicator of reduced effec-tiveness for nanofluid products.In addition,the oil displacement experiments demonstrated that the JAPNs could enhance oil recovery by 17.14%under an ultra-low concentration of 0.005%and were more suitable for low permeability cores.The findings can help for a better understanding of the material preparation of polymer nanosheets.We also hope that this study could shed more light on the nano-flooding technology for EOR.展开更多
In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), ...In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers.展开更多
Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in s...Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models.展开更多
Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in...Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs.展开更多
In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting m...In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting materials(HTMs) is still desired and meaningful. One simple and efficient way to achieve high performance dopant-free HTMs is to synthesize novel non-conjugated side-chain polymers via rational molecular design. In this work, N-(4-methoxyphenyl)-9,9-dimethyl-9H-fluoren-2-amine(FMeNPh) groups are introduced into the poly(N-vinylcarbazole)(PVK) side chains to afford two nonconjugated polymers PVCz-DFMeNPh and PVCz-FMeNPh as dopant-free HTMs in inverted quasi-2D PSCs. Benefited from the flexible properties of polyethylene backbone and excellent optoelectronic natures of FMeNPh side-chain groups, PVCz-DFMeNPh with more FMeNPh units exhibited excellent thermal stability, well-matched energy levels and improved charge mobility as compared to PTAA and PVCzFMeNPh. Moreover, the morphologies investigation of quasi-2D perovskite on PVCz-DFMeNPh shows more compact and homogeneous perovskite films than those on PTAA and PVCz-FMeNPh. As a result,the dopant-free PVCz-DFMeNPh based inverted quasi-2D PSCs deliver power conversion efficiency(PCE) up to 18.44% as well as negligible hysteresis and favorable long-term stability, which represents as excellent performance reported to date for inverted quasi-2D PSCs. The results demonstrate the great potentials of constructing non-conjugated side-chain polymer HTMs based on phenylfluorenamine-func tionalized PVK for the development of high efficient and stable inverted 3D or quasi-2D PSCs.展开更多
We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials ca...We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials; which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials.展开更多
Because of the dispersion at the nanometer level, polymer-clay nanocomposites exhibit superior properties in comparison with pure polymer or conventional composites; this includes properties such as barrier properties...Because of the dispersion at the nanometer level, polymer-clay nanocomposites exhibit superior properties in comparison with pure polymer or conventional composites; this includes properties such as barrier properties , improved thermal stability and flame retardancy. The outstanding properties of polymer-clay nanocomposites are achieved at a much lower volume fraction, compared with conventional composites. Polymer-clay nanocomposites can be processed using common techniques, such as extrusion and casting, which are superior to the cumbersome techniques used for the conventional composites. Hence, polymer-clay nanocomposites have important potential commercial value.展开更多
A novel polymeric reaction monomer (NPRM) for preparing highly fluorescent rare earth polymer materials was synthesized via interface and coordinating reaction. The composition and structure of the NPRM and intermedia...A novel polymeric reaction monomer (NPRM) for preparing highly fluorescent rare earth polymer materials was synthesized via interface and coordinating reaction. The composition and structure of the NPRM and intermediate product (ligand) were characterized through the Fourier transform infrared spectroscopy (FT-IR), carbon-nuclear magnetic resonance spectrum (13CNMR), Mass spectra (MS), and element analysis data. The results showed that the composition and structure of NPRM agreed with that of anticipated product. The NPRM was composed of two important sections. Section 1 was able to provide excellent fluorescent properties for final rare earth polymer material through the effect energy transfer between ligand and rare earth ion; Section 2 would endow with the NPRM excellent polymeric active and form highly fluorescent rare earth polymer material. Fluorescent properties of the NPRM were also researched via a CARY ECLIPSE fluorescent spectrometer. The results showed that the NPRM possessed excellent luminescent properties. The corresponding emission peaks based on the 5D0→7F1(601.6 nm), 5D0→7F2(625.0 nm), 5D0→7F3(660.5 nm) and 5D0→7F4(706.3 nm) transitions for Eu3+ were observed. The strongest emission peak was at 625 nm, which belonged to 5D0→7F2 transition.展开更多
Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadoli...Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadolinium ion selective electrode besides the effects of their structures.1.Effect of preparation process of the grafted polymers on the properties ofgadolinium ion selective electrodesThe electrode membranes which consist of functional polymers as active materials were prepared by re-action of gadolinium chloride with the radiation grafted clmer of acrlic acid and polystyrene of which展开更多
The new generation of biomaterials focuses on the design of biomimetic polymeric materials that are capable of eliciting specific cellular responses and directing new tissue formation. Since Arg-Gly-Asp (RGD) sequen...The new generation of biomaterials focuses on the design of biomimetic polymeric materials that are capable of eliciting specific cellular responses and directing new tissue formation. Since Arg-Gly-Asp (RGD) sequences have been found to promote cell adhesion in 1984, numerous polymers have been functionalized with RGD peptides for tissue engineering applications. This review gave the advance in RGD modified biomimetic polymeric materials,focusing on the mechanism of RGD, the surface and bulk modification of polymer with RGD peptides and the evaluation in vitro and in vivo of the modified biomimetic materials.展开更多
A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The ...A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12172151 and 12172149).
文摘The relationship between the protective performance of flexible polymer material and material parameters(elasticmodulus,viscosity coefficient)is explored,an impact collision motion equation between two bodies is establishedfrom the viscoelastic material constitutive,and the relationship between the kinematic response and the materialparameters is obtained.Based on the Kelvin constitutive model,a theoretical model for impact between the pro-tective body and the protected body is established,then the dynamic response is obtained.The feasibility of themodel was verified by drop hammer experiment,and the material parameters(elastic modulus,viscosity coeffi-cient)were obtained by formula.The model is discretized and the relationship between local impact response andmaterial parameters is analyzed.The discussion results on the relationship between the impact response and theprotective material performance indicate that adjusting the elastic modulus,viscosity coefficient,and thicknessof the protective material can effectively improve protective effect.
文摘In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.
文摘Composite fabrics based on Polytetrafluoroethylene(PTFE)polymer displays several notable properties.They are waterproof,windproof,permeable to moisture and thermally insulating at the same time.In the present study,PTFE fibers are used as raw material to make fiber membranes.The film is formed by crisscrossing interconnected fiber filaments and the related air permeability:tensile creep characteristics and other properties are tested.The results show that the pore size,thickness,and porosity of the film itself can affect the moisture permeability of the film.The water pressure resistance of the selected fabric is 8.5 kPa,and the moisture permeability is 7038 g/(m^(2)·24 h).
基金This work is financially supported by a University-Level Doctoral Research Start-Up Fund in 2019.
文摘A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry.
基金supported by the project"OKTAEDR-partnership and building network."Project registration number is cz.1.07./2.4.00/31.0012.
文摘Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluents contained in the materials appeared at the end of 90´s.This situation was supported by the Council of Europe in 2004 to reduce VOC emissions to zero till 2020.Solvent materials were thus largely replaced by solvent free materials from which the volatile substances are not released into the air.But pressure continued to increase,and over the past decade began to take centre stage water-based epoxy.On the Czech market solvent based material is still occasionally used,but predominant are solvent free materials.There are no commonly used materials containing wastes as fillers in new water-borne and solvent-free epoxy materials.Characteristics identification of the waste material as a potential filler is a set of properties that determine the limits of secondary raw materials or waste as a filler.This paper describes the basic characteristics which must be selected to meet the requirements,to affect negatively the workability,sedimentation,properties and behavior of the final floor system.Some materials must comply with special requirements,such as resistance to chemicals,etc.Next part of paper talks about utilization of polymer floors and their mechanical properties.
文摘Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization.
文摘Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them suitable for preparing microspheres.Inorganic materials(mainly inorganic minerals)have excellent mechanical properties and are inexpensive and easy to obtain.Through the coupling and hybridization of natural polymers and inorganic materials,they can complement each other's advantages and synergistically enhance efficiency,resulting in many excellent physical and chemical properties.Inorganic materials/natural polymer composite microspheres can be prepared by modifying natural polymers with inorganic materials through various methods such as emulsification crosslinking,solution mixing,in-situ synthesis,extrusion,etc.The application of inorganic materials/natural polymer composite microspheres in drug delivery systems has significant sustained-release effects,is safe and non-toxic,and the cost of carrier materials is relatively low,which has certain significance for the development of new drug carriers.This article reviews the recent research on the preparation,drug loading and release properties of inorganic material/natural polymer composite microspheres,analyzes the advantages and disadvantages of commonly used preparation methods,and looks forward to the development direction of composite microspheres.
基金supported by the National Natural Science Foundation of China(52074320)Petrochina Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-03)。
文摘Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have been scarcely reported in the field of enhancing oil recovery(EOR).Herein,a kind of organic-based flexible JAPNs was prepared by paraffin emulsion methods.The lateral sizes of JAPNs were ranging from hundreds of nanometers to several micrometers and the thickness was about 3 nm.The organic-based nanosheets were equipped with remarkably flexible structures,which could improve their injection performance.The dispersion and interfacial properties of JAPNs were studied systematically.By modification of crosslinking agent containing multiple amino groups,the JAPNs had excellent hydro-philicity and salt resistance compared with conventional inorganic or composite nanosheets.The settling time of nanosuspension with NaCl and CaCl_(2) at a low salinity of 1000 mg/L was over 240 h.The value could also remain 124 h under the salinity of 10,000 mg/L NaCl.With the dual functionalities of Janus amphiphilic nature and nanoparticles'Pickering effect,JAPNs could change rock wettability and form emulsions as"colloidal surfactants",In particular,a new technology called optical microrheology was pioneered to explore the destabilization state of nanosuspensions for the first time.Since precipitation lagged behind aggregation,especially for stable suspension systems,the onset of the unstable behavior was difficult to be detected by conventional methods,which should be the indicator of reduced effec-tiveness for nanofluid products.In addition,the oil displacement experiments demonstrated that the JAPNs could enhance oil recovery by 17.14%under an ultra-low concentration of 0.005%and were more suitable for low permeability cores.The findings can help for a better understanding of the material preparation of polymer nanosheets.We also hope that this study could shed more light on the nano-flooding technology for EOR.
文摘In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers.
文摘Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models.
基金the support from the National Natural Science Foundation of China (51873177, 51573153, 61564003 and 21875204)the group of Advanced Photoelectricity and Supermolecule Function Materials of Ministry of Education (IRT-17R90)+1 种基金the Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilizationsupport from Guangxi Bagui Scholar Program and Guangxi Natural Science Foundation (2015GXNSFGA139002)。
文摘Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs.
基金financially supported by the National Key Research and Development Program of China (2018YFB0406704)the National Natural Science Foundation of China (61974066, 61725502, 61634001)+3 种基金the Major Research Plan of the National Natural Science Foundation of China (91733302)the fund for Talented of Nanjing Tech University (201983)the Major Program of Natural Science Research of Jiangsu Higher Education Institutions of China (18KJA510002)the Synergetic Innovation Center for Organic Electronics and Information Displays。
文摘In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting materials(HTMs) is still desired and meaningful. One simple and efficient way to achieve high performance dopant-free HTMs is to synthesize novel non-conjugated side-chain polymers via rational molecular design. In this work, N-(4-methoxyphenyl)-9,9-dimethyl-9H-fluoren-2-amine(FMeNPh) groups are introduced into the poly(N-vinylcarbazole)(PVK) side chains to afford two nonconjugated polymers PVCz-DFMeNPh and PVCz-FMeNPh as dopant-free HTMs in inverted quasi-2D PSCs. Benefited from the flexible properties of polyethylene backbone and excellent optoelectronic natures of FMeNPh side-chain groups, PVCz-DFMeNPh with more FMeNPh units exhibited excellent thermal stability, well-matched energy levels and improved charge mobility as compared to PTAA and PVCzFMeNPh. Moreover, the morphologies investigation of quasi-2D perovskite on PVCz-DFMeNPh shows more compact and homogeneous perovskite films than those on PTAA and PVCz-FMeNPh. As a result,the dopant-free PVCz-DFMeNPh based inverted quasi-2D PSCs deliver power conversion efficiency(PCE) up to 18.44% as well as negligible hysteresis and favorable long-term stability, which represents as excellent performance reported to date for inverted quasi-2D PSCs. The results demonstrate the great potentials of constructing non-conjugated side-chain polymer HTMs based on phenylfluorenamine-func tionalized PVK for the development of high efficient and stable inverted 3D or quasi-2D PSCs.
基金This work has been supported by the US National Institutes of Health (No. RO1-DE09848 to YW) and Natural Science Foundation of China (NSFC Nos. 29674001 and 19810760343 to KYQ and YW).
文摘We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials; which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials.
基金Support by the Natural Science Foundation (51064006, 41272064) of ChinaGuangxi Science Foundation (2011GXNSFD 018008)Open Fund of Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (KLMM20110202)
文摘Because of the dispersion at the nanometer level, polymer-clay nanocomposites exhibit superior properties in comparison with pure polymer or conventional composites; this includes properties such as barrier properties , improved thermal stability and flame retardancy. The outstanding properties of polymer-clay nanocomposites are achieved at a much lower volume fraction, compared with conventional composites. Polymer-clay nanocomposites can be processed using common techniques, such as extrusion and casting, which are superior to the cumbersome techniques used for the conventional composites. Hence, polymer-clay nanocomposites have important potential commercial value.
基金the Development Programof Science &Technology of Tianjin (06TXTJJC14400)
文摘A novel polymeric reaction monomer (NPRM) for preparing highly fluorescent rare earth polymer materials was synthesized via interface and coordinating reaction. The composition and structure of the NPRM and intermediate product (ligand) were characterized through the Fourier transform infrared spectroscopy (FT-IR), carbon-nuclear magnetic resonance spectrum (13CNMR), Mass spectra (MS), and element analysis data. The results showed that the composition and structure of NPRM agreed with that of anticipated product. The NPRM was composed of two important sections. Section 1 was able to provide excellent fluorescent properties for final rare earth polymer material through the effect energy transfer between ligand and rare earth ion; Section 2 would endow with the NPRM excellent polymeric active and form highly fluorescent rare earth polymer material. Fluorescent properties of the NPRM were also researched via a CARY ECLIPSE fluorescent spectrometer. The results showed that the NPRM possessed excellent luminescent properties. The corresponding emission peaks based on the 5D0→7F1(601.6 nm), 5D0→7F2(625.0 nm), 5D0→7F3(660.5 nm) and 5D0→7F4(706.3 nm) transitions for Eu3+ were observed. The strongest emission peak was at 625 nm, which belonged to 5D0→7F2 transition.
文摘Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadolinium ion selective electrode besides the effects of their structures.1.Effect of preparation process of the grafted polymers on the properties ofgadolinium ion selective electrodesThe electrode membranes which consist of functional polymers as active materials were prepared by re-action of gadolinium chloride with the radiation grafted clmer of acrlic acid and polystyrene of which
基金supported by the National Natural Science Foundation of China under grant No.30300084the Key Scientific and Technological Foundation of the State Ministry of Education in China.
文摘The new generation of biomaterials focuses on the design of biomimetic polymeric materials that are capable of eliciting specific cellular responses and directing new tissue formation. Since Arg-Gly-Asp (RGD) sequences have been found to promote cell adhesion in 1984, numerous polymers have been functionalized with RGD peptides for tissue engineering applications. This review gave the advance in RGD modified biomimetic polymeric materials,focusing on the mechanism of RGD, the surface and bulk modification of polymer with RGD peptides and the evaluation in vitro and in vivo of the modified biomimetic materials.
文摘A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging.