期刊文献+
共找到42,352篇文章
< 1 2 250 >
每页显示 20 50 100
Si-based polymer-derived ceramics for energy conversion and storage 被引量:3
1
作者 Qingbo WEN Fangmu QU +3 位作者 Zhaoju YU Magdalena GRACZYK-ZAJAC Xiang XIONG Ralf RIEDEL 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第2期197-246,共50页
Since the 1960s,a new class of Si-based advanced ceramics called polymer-derived ceramics(PDCs)has been widely reported because of their unique capabilities to produce various ceramic materials(e.g.,ceramic fibers,cer... Since the 1960s,a new class of Si-based advanced ceramics called polymer-derived ceramics(PDCs)has been widely reported because of their unique capabilities to produce various ceramic materials(e.g.,ceramic fibers,ceramic matrix composites,foams,films,and coatings)and their versatile applications.Particularly,due to their promising structural and functional properties for energy conversion and storage,the applications of PDCs in these fields have attracted much attention in recent years.This review highlights the recent progress in the PDC field with the focus on energy conversion and storage applications.Firstly,a brief introduction of the Si-based polymer-derived ceramics in terms of synthesis,processing,and microstructure characterization is provided,followed by a summary of PDCs used in energy conversion systems(mainly in gas turbine engines),including fundamentals and material issues,ceramic matrix composites,ceramic fibers,thermal and environmental barrier coatings,as well as high-temperature sensors.Subsequently,applications of PDCs in the field of energy storage are reviewed with a strong focus on anode materials for lithium and sodium ion batteries.The possible applications of the PDCs in Li–S batteries,supercapacitors,and fuel cells are discussed as well.Finally,a summary of the reported applications and perspectives for future research with PDCs are presented. 展开更多
关键词 polymer-derived ceramics(PDCs) high-temperature resistance structural properties electrochemical properties MICROSTRUCTURE
原文传递
Two birds with one stone: Simultaneous fabrication of HfC nanowires and CNTs through efficient utilization of polymer-derived ceramics
2
作者 Yanqin Fu Yulei Zhang +4 位作者 Xuemin Yin Liyuan Han Qiangang Fu Hejun Li Ralf Riedel 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第34期163-172,共10页
Carbon nanotubes(CNTs) are fabricated in carbon cloth by ultilizing the waste gasses when fabricating hafnium carbide nanowires(HfC_(NWS)) through thermal pyrolysis of Hf-containing polymer precursor.The formed HfC_(N... Carbon nanotubes(CNTs) are fabricated in carbon cloth by ultilizing the waste gasses when fabricating hafnium carbide nanowires(HfC_(NWS)) through thermal pyrolysis of Hf-containing polymer precursor.The formed HfC_(NWS) are distributed uniformly on the surface of the carbon fibers in carbon/carbon(C/C) composites and display perfect single crystal appearance.The pyrolysis of the Hf-containing organic precursor provides hafnium and carbon source for the growth of HfC_(NWS).The released waste gasses containing CO,CH4and CO_(2)are the main carbon source for the growth of CNTs.Specifically,the flexural strength of HfC_(NWS) reinforced carbon/carbon(HfC_(NWS)-C/C) composites is enhanced by ~105% compared with pure C/C,and the CNTs/carbon cloth also displays improved electrochemical performance with respect to capacitor applications.The present study introduces a novel sustainable and eco-friendly process related to polymer-derived ceramics to form advanced ceramic nanocomposites and proposes a deep understanding of the growth mechanism of CNTs. 展开更多
关键词 HfC nanowires Carbon nanotubes Waste gasses Effective utilization polymer-derived ceramics
原文传递
Structural and Luminescent Properties of Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)Green-Emitting Transparent Ceramic Phosphor
3
作者 郝留成 MIAO Xiaojun +4 位作者 LI Kai ZHONG Jianying 涂兵田 YANG Zhangfu 王皓 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期533-540,共8页
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint... A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes. 展开更多
关键词 transparent ceramic phosphor green emission MGALON PHOTOLUMINESCENCE
下载PDF
Correlation between hydration properties and electrochemical performances on Ln cation size effect in layered perovskite for protonic ceramic fuel cells
4
作者 Inhyeok Cho Jiwon Yun +4 位作者 Boseok Seong Junseok Kim Sun Hee Choi Ho-Il Ji Sihyuk Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期1-9,I0001,共10页
PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula... PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated. 展开更多
关键词 Protonic ceramic fuel cell CATHODE Triple ionic and electronic conductor Hydration property Proton uptake Gibbs free energy
下载PDF
Clay Materials for Ceramics Application from N’Djamena in the Chad Republic: Mineralogical, Physicochemical and Microstructural Characterization
5
作者 Ndjolba Madjihingam Djoda Pagore +3 位作者 Jacques Richard Mache Bebbata Warabi Bertin Pagna Kagonbe Patrick Mountapmbeme Kouotou 《Journal of Materials Science and Chemical Engineering》 2024年第2期31-48,共18页
Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SE... Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SEM. In addition, TGA/DSC were performed to control decomposition/mass loss and show phase transitions respectively of CMs. Geochemical analysis by XRF reveals the following minerals composition: SiO<sub>2</sub> (~57% - 66%), Al<sub>2</sub>O<sub>3 </sub>(~13% - 15%), Fe<sub>2</sub>O<sub>3</sub> (~6% - 10%), TiO<sub>2</sub> (~1% - 2%) were the predominant oxides with a reduced proportion in C1, and (~7%) of fluxing agents (K<sub>2</sub>O, CaO, Na<sub>2</sub>O). Negligible and trace of MgO (~1%) and P<sub>2</sub>O<sub>5</sub> was noted. The mineralogical composition by XRD shows that, C1, C2 and C3 display close mineralogy with: Quartz (~50%), feldspar (~20%) as non-clay minerals, whereas clays minerals were mostly kaolinite (~15%), illite (~5%) and smectite (~10%). FTIR analysis exhibits almost seemingly similar absorption bands characteristic of hydroxyls elongation, OH valence vibration of Kaolinite and stretching vibration of some Metal-Oxygen bond. SEM micrographs of the samples exhibit microstructureformed by inter-aggregates particles with porous cavities. TGA/DSCconfirm the existence of quartz (570˚C to 870˚C), carbonates (600˚C - 760˚C), kaolinite (569˚C - 988˚C), illite (566˚C - 966˚C), MgO (410˚C - 720˚C) and smectite (650˚C - 900˚C). The overall characterization indicates that, these clayey soils exhibit good properties for ceramic application. 展开更多
关键词 Clay Soils Characterization MINERALOGY Physicochemical Properties ceramic Application
下载PDF
Study on Acoustic Emission Characteristics of Deformation Damage Process of Zirconia Ceramics
6
作者 Qingchuan Fu Yushu Lai 《Journal of Materials Science and Chemical Engineering》 2024年第2期61-72,共12页
Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited r... Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals. 展开更多
关键词 Zirconia ceramics Acoustic Emission Monitoring Crack Damage
下载PDF
Organosilicon polymer-derived ceramics: An overview 被引量:13
7
作者 Shengyang FU Min ZHU Yufang ZHU 《Journal of Advanced Ceramics》 SCIE CSCD 2019年第4期457-478,共22页
Polymer-derived ceramics(PDCs) strategy shows a great deal of advantages for the fabrication of advanced ceramics. Organosilicon polymers facilitate the shaping process and different silicon-based ceramics with contro... Polymer-derived ceramics(PDCs) strategy shows a great deal of advantages for the fabrication of advanced ceramics. Organosilicon polymers facilitate the shaping process and different silicon-based ceramics with controllable components can be fabricated by modifying organosilicon polymers or adding fillers. It is worth noting that silicate ceramics can also be fabricated from organosilicon polymers by the introduction of active fillers, which could react with the produced silica during pyrolysis. The organosilicon polymer-derived ceramics show many unique properties, which have attracted many attentions in various fields. This review summarizes the typical organosilicon polymers and the processing of organosilicon polymers to fabricate silicon-based ceramics, especially highlights the three-dimensional(3 D) printing technique for shaping the organosilicon polymerderived ceramics, which makes the possibility to fabricate silicon-based ceramics with complex structure. More importantly, the recent studies on fabricating typical non-oxide and silicate ceramics derived from organosilicon polymers and their biomedical applications are highlighted. 展开更多
关键词 polymer-derived ceramics(PDCs) ORGANOSILICON POLYMERS 3D PRINTING SILICON-BASED ceramicS
原文传递
Development of Modified Glasses by Transparent, Functional Hybrid Sol-Gel Nano-Ceramic Coatings, a Comparative Study
8
作者 Md. Barkat Ullah Yeasmin Akter +1 位作者 Khodeja Afrin Md. Saiful Quddus 《World Journal of Engineering and Technology》 2024年第1期170-184,共15页
This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil... This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields. 展开更多
关键词 SOL-GEL Nano-ceramic Coatings Self-Cleaning Glass Water Contact Angle Optical Transmission
下载PDF
Erratum to:Si-based polymer-derived ceramics for energy conversion and storage
9
作者 Qingbo WEN Fangmu QU +3 位作者 Zhaoju YU Magdalena GRACZYK-ZAJAC Xiang XIONG Ralf RIEDEL 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第6期984-984,共1页
Besides the original acknowledgements,the authors Ralf Riedel and Magdalena Graczyk-Zajac would like to also acknowledge EU support in the frame of H2020 project SIMBA under grant agreement number 963542.
关键词 ceramicS KNOWLEDGE POLYMER
原文传递
Effects of ZnO,FeO and Fe_(2)O_(3)on the spinel formation,microstructure and physicochemical properties of augite-based glass ceramics 被引量:1
10
作者 Shuai Zhang Yanling Zhang Shaowen Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1207-1216,共10页
Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The resu... Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The results showed that oxides resulted in numerous preliminary spinels in the glass matrix.FeO,ZnO,and Fe_(2)O_(3)influenced the formation of spinel,while FeO simplified the glass network.FeO and ZnO promoted bulk crystallisation of the parent glass.After adding oxides,the grains of augite phase were refined,and the relative quantities of augite crystal planes were also influenced.All samples displayed good mechanical properties and chemical stability.The 2wt%ZnO-doping sample displayed the maximum flexural strength(170.3 MPa).Chromium leaching amount values of all the samples were less than the national standard(1.5 mg/L),confirming the safety of the materials.In conclusion,an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics. 展开更多
关键词 SPINEL network structure thermodynamics MICROSTRUCTURE glass ceramics
下载PDF
Relationships between distribution characteristics of ceramic fragments and anti-penetration performance of ceramic composite bulletproof insert plates 被引量:1
11
作者 Wen-hao Yu Wei-ping Li +3 位作者 Yi-fan Shangguan Xin-yang Ji Tian Ma Guo-qing Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期103-110,共8页
Through quantitative statistics and morphological characterization of ceramic fragments for ceramic composite bulletproof insert plates(CCBIPs),distribution characteristics of ceramic fragments within a specific size ... Through quantitative statistics and morphological characterization of ceramic fragments for ceramic composite bulletproof insert plates(CCBIPs),distribution characteristics of ceramic fragments within a specific size range were analyzed for different Armor Piercing Incendiary(API)and shot times.To quantitatively evaluate the effect of energy absorption for ceramic plates,a model of energy absorption during penetration for CCBIPs was established based on statistics of the size distribution of ceramic fragments(SDCF).Variation in the SDCF and its influence on energy absorption for CCBIPs were investigated.The results indicate that the distribution feature of ceramic fragments in the range of 0.25-2.25 mm is Gaussian distribution.Compared with Type 56 of API(56-API),ceramic fragments formed by 53-API with higher kinetic energy possess more quantity and more concentrated distribution,whose average equivalence size decreases by 6.5%,corresponding to increasing by 83.9%of estimated energy absorption.Besides,the ability of CCBIPs to resist the third shot is significantly weakened,whose estimated energy absorption decreases by 58.8%compared with the first shot.More concentrated distribution and fewer fragments are formed after the third shot,the average equivalence size of ceramic fragments increases by 6.9%,which may attribute to the micro-cracks induced by the previous two shots. 展开更多
关键词 Bulletproof insert plate ceramic fragment Statistic Energy absorption Anti-penetration performance
下载PDF
Minimizing Carbon Content with Three-in-One Functionalized Nano Conductive Ceramics:Toward More Practical and Safer S Cathodes of Li-S Cells 被引量:1
12
作者 Ning Li Chang Sun +5 位作者 Jianhui Zhu Shun Li Yanlong Wang Maowen Xu Changming Li Jian Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期31-39,共9页
Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,c... Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes. 展开更多
关键词 flame retardance Li-S cells minimized carbon ratio nano conductive ceramics three-in-one functionality
下载PDF
Atomically bonding Na anodes with metallized ceramic electrolytes by ultrasound welding for high-energy/power solid-state sodium metal batteries 被引量:1
13
作者 Dongchen Li Xinxin Wang +7 位作者 Qi Guo Xiaole Yu Shangxu Cen Huirong Ma Jingjing Chen Dajian Wang Zhiyong Mao Chenlong Dong 《Carbon Energy》 SCIE CSCD 2023年第2期184-192,共9页
A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resis... A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries. 展开更多
关键词 intimate interface contact metallized ceramics Na-Au interlayer solid-state sodium metal battery ultrasound welding
下载PDF
Oxidation behavior of Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(x)C(M=Ti,Zr,Hf,Nb,Ta) composite ceramic at high temperature
14
作者 徐帅 王韬 +7 位作者 王新刚 吴璐 方忠强 葛芳芳 蒙萱 廖庆 魏金春 李炳生 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期629-637,共9页
Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M... Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic. 展开更多
关键词 ceramic composites oxidation oxide surface microstructure
下载PDF
Physic, Chemical and Mineralogical Characterizations of Clays Used in the Making of Traditional Ceramics in the City of Katiola, C ôte d’Ivoire
15
作者 Isabelle Linda He Grah Patrick Atheba +3 位作者 N’guadi Blaise Allou Patrick Drogui My Ali El Khakani Gildas Komenan Gbassi 《Journal of Minerals and Materials Characterization and Engineering》 2023年第4期81-91,共11页
In C ?te d’Ivoire, traditional ceramics are widely used in the form of pottery. The latter is used to store food, water and cereals. Analyzes (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ... In C ?te d’Ivoire, traditional ceramics are widely used in the form of pottery. The latter is used to store food, water and cereals. Analyzes (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductive plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM) and analysis thermal gravimetric (ATG)) were carried out to determine the morphology, the chemical, physical and pedological constituents of these raw materials. It appears from this study that the clays used in the Mangoro pottery of Katiola contain silica SiO<sub>2</sub>, alumina Al<sub>2</sub>O<sub>3</sub> and iron oxide Fe<sub>2</sub>O<sub>3</sub> as well as kaolinite, muscovite, smectite and quartz. 展开更多
关键词 ceramics Characterization Clays KAOLINITE MUSCOVITE SMECTITE QUARTZ
下载PDF
Improved microwave dielectric properties of MgAl_(2)O_(4)spinel ceramics through(Li_(1/3)Ti_(2/3))^(3+)doping
16
作者 李潇 杨习志 +7 位作者 赖元明 张芹 李宝阳 戚聪 殷俊 王凡硕 巫崇胜 苏桦 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期668-673,共6页
A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,micros... A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,microstructures,and microwave dielectric properties were investigated.The results of x-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that a single phase of MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with a spinel structure was obtained at x≤0.12,whereas the second phase of MgTi_(2)O_(5)appeared when x>0.12.The cell parameters were obtained by XRD refinement.As the x values increased,the unit cell volume kept expanding.This phenomenon could be attributed to the partial substitution of(Li_(1/3)Ti_(2/3))^(3+)for Al^(3+).Results showed that(Li_(1/3)Ti_(2/3))^(3+)doping into MgAl_(2)O_(4)spinel ceramics effectively reduced the sintering temperature and improved the quality factor(Q_f)values.Good microwave dielectric properties were achieved for a sample at x=0.20 sintering at 1500℃in air for 4 h:dielectric constantε_(r)=8.78,temperature coefficient of resonant frequencyτ_(f)=-85 ppm/℃,and Q_(f)=62300 GHz.The Q_(f)value of the x=0.20 sample was about 2 times higher than that of pure MgAl_(2)O_(4)ceramics(31600 GHz).Thus,MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with excellent microwave dielectric properties can be applied to 5G communications. 展开更多
关键词 microwave dielectric ceramics MgAl_(2)O_(4)ceramic co-substitution MgTi_(2)O_(5) solid solubility limit
下载PDF
Mechanical Properties and Durability of Sustainable Concrete Manufactured Using Ceramic Waste:A Review
17
作者 Peng Zhang Peishuo Zhang +3 位作者 Jingjiang Wu Zhenhui Guo Yong Zhang Yuanxun Zheng 《Journal of Renewable Materials》 SCIE EI 2023年第2期937-974,共38页
Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed.The ceramic waste materials are often directly buried in the ground or placed in ... Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed.The ceramic waste materials are often directly buried in the ground or placed in an open dump,and the accumulation of ceramic waste contributes to environmental pollution,which makes the recycling of ceramic waste quite urgent.Owing to the pozzolanic activity,excellent mechanical properties and durability,industrial ceramic waste is considered as a suitable substitute for cement or natural aggregates to fabricate renewable concrete.In this paper,the pozzolanic activity of ceramic waste and the workability,mechanical performance,and durability of ceramic concrete are discussed.In addition,the most recent research results pertaining to ceramic concrete are reviewed.Ground ceramic powder improves the workability,compressive strength,resistance to chloride penetration,and carbonation resistance of concrete to a certain extent.Concrete containing ceramic as the aggregate has a lower mechanical performance than ordinary concrete.However,the resistance to chloride penetration,freeze-thaw resistance,and high-temperature resistance of ceramic concrete are remarkable.Ceramic concrete is environmentally friendly,requires fewer energy resources to manufacture than ordinary concrete,and has excellent engineering properties.However,further research is required for future engineering applications. 展开更多
关键词 Sustainable concrete ceramic waste pozzolanic activity mechanical properties DURABILITY
下载PDF
Hydrogen production at intermediate temperatures with proton conducting ceramic cells:Electrocatalytic activity,durability and energy efficiency
18
作者 Haoyu Zheng Feng Han +1 位作者 Noriko Sata Rémi Costa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期437-446,I0010,共11页
Proton conducting ceramic cells(PCCs)are an attractive emerging technology operating in the intermediate temperature range of 500 to 700℃.In this work,we evaluate the production of hydrogen at intermediate temperatur... Proton conducting ceramic cells(PCCs)are an attractive emerging technology operating in the intermediate temperature range of 500 to 700℃.In this work,we evaluate the production of hydrogen at intermediate temperatures by proton conducting ceramic cell electrolysis(PCCEL).We demonstrate a highperformance steam electrolysis owing to a composite positrode based on BaGd_(0.8)La_(0.2)Co_(2)O_(6-δ)(BGLC1082)and BaZr0.5Ce0.4Y0.1O3-δ(BZCY541).The high reliability of PCCEL is demonstrated for 1680 h at a current density as high as-0.8 A cm^(-2)close to the thermoneutral cell voltage at 600℃.The electrolysis cell showed a specific energy consumption ranging from 54 to 66 kW h kg^(-1)that is comparable to state-of-the-art low temperature electrolysis technologies,while showing hydrogen production rates systematically higher than commercial solid oxide ceramic cells(SOCs).Compared to SOCs,the results verified the higher performances of PCCs at the relevant operating temperatures,due to the lower activation energy for proton transfer comparing with oxygen ion conduction.However,because of the p-type electronic conduction in protonic ceramics,the energy conversion rate of PCCs is relatively lower in steam electrolysis.The faradaic efficiency of the PCC in electrolysis mode can be increased at lower operating temperatures and in endothermic conditions,making PCCEL a technology of choice to valorize high temperature waste heat from industrial processes into hydrogen.To increase the faradaic efficiency by optimizing the materials,the cell design,or the operating strategy is a key challenge to address for future developments of PCCEL in order to achieve even more superior techno-economic merits. 展开更多
关键词 Steam electrolysis Hydrogen production Proton conducting ceramics Intermediate temperature Energy efficiency
下载PDF
Research of Microstructure,Phase,and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics
19
作者 Liang Yu Yuan Liu +3 位作者 Xiuling Cao Yulong Yan Chen Zhang Yanli Jiang 《Journal of Renewable Materials》 EI 2023年第7期3057-3072,共16页
In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the... In this study,the effect of sintering temperature and the addition of kaolin,a sintering agent,on the microscopic,phase,and mechanical properties of ceramics were investigated using secondary aluminum dross(SAD)as the main component in the manufacturing of ceramics.The basic phases of the ceramics were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)without the addition of kaolin.The diffraction peaks of MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2)kept decreasing while those of Al_(2)O_(3)kept increasing with an increase in temperature.In addition,the increase in temperature promoted the growth of the grains.The grains were uniform in size and regular in distribution,with a shrinkage of 2.2%,porosity of 72.5%,bulk density of 1.076 g/cm^(3),and compressive strength of 1.12 MPa.When the sintering temperature was 1450°C,the basic phases of the ceramic after the addition of kaolin were Al_(2)O_(3),MgAl_(2)O_(4),NaAl_(11)O_(17),and SiO_(2).With the increase of kaolin,the diffraction peaks of NaAl_(11)O_(17)and SiO_(2)decreased until they disappeared,while the diffraction peaks of Al_(2)O_(3)increased significantly.When kaolin was added at 30 wt.%,the ceramics obtained had shrinkage of 18%,a porosity of 47.26%,a bulk density of 1.965 g/cm^(3),and compressive strength of 31.9 MPa.Cracks existed inside the ceramics without the addition of kaolin,while the addition of kaolin significantly changed this defect.It is shown that SAD can obtain porous ceramics with good properties at a sintering temperature of 1450°C and a kaolin addition of 30 wt.%. 展开更多
关键词 Secondary aluminum dross porous ceramics microstrure PHASE mechanical properties
下载PDF
Preparation and Thermal Shock Resistance of Mullite Ceramics for High Temperature Solar Thermal Storage
20
作者 吴建锋 章真宇 +3 位作者 XU Xiaohong MA Sitong LI Peixian SHI Xingxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期743-752,共10页
Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testin... Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin.The phase composition,microstructure,high temperature resistance and thermophysical properties were characterized by modern testing techniques.The experimental results indicate that sample A3(bauxite/kaolin ratio of 5:5)sintered at 1620℃has the optimum comprehensive properties,with bulk density of 2.83 g·cm^(-3)and bending strength of 155.44 MPa.After 30 thermal shocks(1000℃-room temperature,air cooling),the bending strength of sample A3 increases to 166.15 MPa with an enhancement rate of 6.89%,the corresponding thermal conductivity and specific heat capacity are 3.54 W·(m·K)^(-1)and 1.39 kJ·(kg·K)^(-1)at 800℃,and the thermal storage density is 1096 kJ·kg^(-1)(25-800 mullite ceramics;sintering properties;high-temperature thermal storage;thermal shock resistance).Mullite forms a dense and continuous interlaced network microstructure,which endows the samples high thermal storage density and high bending strength,but the decrease of bauxite/kaolin ratio leads to the decrease of mullite content,which reduces the properties of the samples. 展开更多
关键词 mullite ceramics sintering properties high-temperature thermal storage thermal shock resistance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部