Some structural factors to the design of polymer-supported Chiral Catalysts arediscussed, and some new approaches for designing of polymer-supported catalysts arereviewed in this paper
A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecula...A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.展开更多
The neodymium complex supported on styrene-maleic anhydride copolymer (SMA·Nd) has been prepared for the first time and found to be a highly effective catalyst for the polymerization of styrene. The SMA·Nd p...The neodymium complex supported on styrene-maleic anhydride copolymer (SMA·Nd) has been prepared for the first time and found to be a highly effective catalyst for the polymerization of styrene. The SMA·Nd polymeric complex is characterized by IR and its catalytic activity, and the polymerization features have been investigated in comparison with that of the conventional Ziegler-Natta catalysts. When [Nd]=1×10^(-3) mol/L, [M]=5mol/L, Al/Nd=170(mol ratio) and CCl_4/Nd=50(mol ratio), the polymerization conversion of styrene gets to 51.6% in six hours, and the catalytic activity reaches 1852 gPS/gNd, which is much higher than that of conventional rare earth catalysts. The polymerization reaction has an induction period and shows some characteristics of chain polymerization. The polymerization rate is the first order with respect to the concentration of styrene monomer. Addition of FeCl_3 does not suppress the polymerization.展开更多
Tetranuclear Rh-Co bimetallic cluster was synthesized and characterized by IR and XPS. The properties of the anchored catalysts, its stability and the ligand effect were also studied. The experimental results show tha...Tetranuclear Rh-Co bimetallic cluster was synthesized and characterized by IR and XPS. The properties of the anchored catalysts, its stability and the ligand effect were also studied. The experimental results show that the optimal conditions for the hydroformylation of hexene-1 are as follows: the temperature is 80℃, reaction time 8 h, pressure 5. 88×105 Pa, and molar ratio of H2/CO 1. 2/1. 0. Functional groups attached to the donor atom(N) possess more or less some influence on the catalytic behavior. Compared with the homogeneous cluster, the polymer-supported bimetallic cluster is more stable. After the catalytic reaction, the structure of the anchored catalysts was not destroyed. X-ray photoelectron spectroscopy characterization indicates that there is a weak interaction between the polymer support and the active metals.展开更多
The polymerization mechanism is described by the conductance change with the time during the polymerization. The mechanism can be explained by the equilibrium feature (i.e. main ion-pairs) between the free ions and th...The polymerization mechanism is described by the conductance change with the time during the polymerization. The mechanism can be explained by the equilibrium feature (i.e. main ion-pairs) between the free ions and the ion-pairs dissociated by the organic salt (-) Sp*(+)(+) CSA*(-) (An asterisk represents the chirality) and the scheme of the polymerization process is described mainly by the charge transfer complexes having chiral induction power.展开更多
Enantioselective alternating copolymerization of carbon monoxide with propylene was carried out using palladium catalyst modified by 1,4-3,6-dianhydro-2,5-dideoxy-2,5-bis (diphenylphosphino)-L-iditol (DDPPI). The chir...Enantioselective alternating copolymerization of carbon monoxide with propylene was carried out using palladium catalyst modified by 1,4-3,6-dianhydro-2,5-dideoxy-2,5-bis (diphenylphosphino)-L-iditol (DDPPI). The chiral diphosphine was proved to be effective at enantioselective copolymerization. Optical rotation, elemental analysis, H-1, C-13-NMR and IR spectra showed that the copolymer was optically active, isotactic, alternating poly(1,4-ketone) structure.展开更多
Four types of chiral thiazolidine derivatives were synthesized conveniently from natural L-cysteine and showed good enantioselectivity in up to 90% ee in the addition of diethylzine to benzaldehyde. Their enantioselec...Four types of chiral thiazolidine derivatives were synthesized conveniently from natural L-cysteine and showed good enantioselectivity in up to 90% ee in the addition of diethylzine to benzaldehyde. Their enantioselectivity was affected by the bulkiness of R and the thiazolidine ring systems in their molecules.展开更多
The neodymium complexes with crosslinked polystyrene containing -CH2SH and -CH2SOCH3 groups, P-CH2SH . NdCl3 and P-CH2SOCH3. NdCl3, were prepared. P-CH2SH . NdCl3 shows no catalytic activity for butadiene polymerizati...The neodymium complexes with crosslinked polystyrene containing -CH2SH and -CH2SOCH3 groups, P-CH2SH . NdCl3 and P-CH2SOCH3. NdCl3, were prepared. P-CH2SH . NdCl3 shows no catalytic activity for butadiene polymerization, while P-CH2SOCH3. NdCl3 can catalyze the polymerization of butadiene. The content of cis-1,4-polybutadiene is more than 95%.展开更多
Four polymer-supported Fe-Co tetrametallic clusters have been prepared by ion exchange and ligand exchange. Their structures were characterized by IR, UV/visible diffuse reflectance spectra and elemental analysis, and...Four polymer-supported Fe-Co tetrametallic clusters have been prepared by ion exchange and ligand exchange. Their structures were characterized by IR, UV/visible diffuse reflectance spectra and elemental analysis, and by analogy with the reference cluster PhCH_2NMe_3FeCo_3 (CO)_2 . The four heterogenous clusters were efficient catalysts in the hydroformylation of 1-hexene, turnover numbers amounted to 823 — 924 with the yield of 83.2—92.4% heptyl aldehydes and ratios of normal aldehyde to iso-aldehyde of 1.2—1.6, they are facilitated forming the normal aldehyde in comparison with the homogeneous analogue. For the polymer-supported clusters prepared by ion exchange, the polymer-cation parts had no obvious effect on the activity of the cluster anion. The polymer-phosphine substituted cluster prepared by ligand exchange was more stable than the clusters preparedby ion exchange.展开更多
Hydrogenations for olefinic double bonds catalyted by the Pd-Fe2O3/D3520 resin and Pd-Bi2O3/D3520 resin were reported. These catatysts were characterized by IR spectra and XPS methods. The XPS investigation indicated ...Hydrogenations for olefinic double bonds catalyted by the Pd-Fe2O3/D3520 resin and Pd-Bi2O3/D3520 resin were reported. These catatysts were characterized by IR spectra and XPS methods. The XPS investigation indicated that the-electron transfer from Fe atom in Fe2O3 to Pd, enhanced the hy-drogenation activity of the catalysts,and Bi2O3 drew electrons from Pd, leading to the lowering of the hydrogenation rate. When Pd/Bi atom ratio = 1, the hydrogenation was inhibited entirely. The IR spectra of resin 1)3520 showed no significant changes when Pd and the metallic oxides were supported on the polymer particles. That indicates that there are no obvious inter-actions between Pd (or metallic oxides) and supporter. Finally , a possible hydrogenation mechanism ,was also supposed.展开更多
A new complex (1) was prepared by mixing pyridinium polystyrylsulfonate resin and aqueous fluoboric acid, followed by being dehydrated. 1 can be used as an acidic catalyst for the acetalization of benzaldehyde with n-...A new complex (1) was prepared by mixing pyridinium polystyrylsulfonate resin and aqueous fluoboric acid, followed by being dehydrated. 1 can be used as an acidic catalyst for the acetalization of benzaldehyde with n-butanol with a highly catalytic activity. The characterization and reusability of 1 are discussed.展开更多
A bicentral polymer-supported Phase transfer catalyst, polystpyne-suPPorted polyethylene glycol and Pyridinium salt (PS-Py-PEG-400),synthesized with ohloromethylated polystyrene as supporter on which PEG and Pyridiniu...A bicentral polymer-supported Phase transfer catalyst, polystpyne-suPPorted polyethylene glycol and Pyridinium salt (PS-Py-PEG-400),synthesized with ohloromethylated polystyrene as supporter on which PEG and Pyridinium salt were immobilized successively. Its catalytic activity was tested for the reauction of solid potassium acetate and benzyl bromide by GC analysis. It was found that the bicentral catalyst performed higher activity than the monocentral PS-PEG-400 and PS-Py.展开更多
Chloranil through condensation reaction with vicinal diamine such as diaminomaleonitrile produced heterocyclic monomer, p-benzoquinonebis[2,3-b; 2',3'-b']pyrazine-5,6-dinitrile. The tetranitrile monomer was cyclo-t...Chloranil through condensation reaction with vicinal diamine such as diaminomaleonitrile produced heterocyclic monomer, p-benzoquinonebis[2,3-b; 2',3'-b']pyrazine-5,6-dinitrile. The tetranitrile monomer was cyclo-tetramerised using lithium/pentanol and acetic acid affording the corresponding tetrap-benzoquinone bis[2,3-b; 2',3'-b']pyrazinoporphyrazine)]- based network polymer (2H-Pz). The tetranitril monomer was cyclo-tetramerised using metal salt and quinoline affording the corresponding porphyrazinato-metal II-based network polymers (M-Pz), M = Co, Ni or Cu. Elemental analytical results, IR and NMR spectral data of the prepared molecules are consistent with their assigned formulations. Molecular masses and metal contents of the synthesized polymers proved to be of high molecular masses which confirm the efficiency of tetramerization polymerization and complexation reactions. The prepared pyrazinoporphyrazines were used as efficient catalysts for the oxidation of thiophenol and benzylthiol to their disulfides in the presence of air atmosphere. The results of oxidation of thiophenol and benzylthiol show that after 15 min the maximum yield of the corresponding disulfides reached 95%, 91%, respectively.展开更多
文摘Some structural factors to the design of polymer-supported Chiral Catalysts arediscussed, and some new approaches for designing of polymer-supported catalysts arereviewed in this paper
文摘A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.
文摘The neodymium complex supported on styrene-maleic anhydride copolymer (SMA·Nd) has been prepared for the first time and found to be a highly effective catalyst for the polymerization of styrene. The SMA·Nd polymeric complex is characterized by IR and its catalytic activity, and the polymerization features have been investigated in comparison with that of the conventional Ziegler-Natta catalysts. When [Nd]=1×10^(-3) mol/L, [M]=5mol/L, Al/Nd=170(mol ratio) and CCl_4/Nd=50(mol ratio), the polymerization conversion of styrene gets to 51.6% in six hours, and the catalytic activity reaches 1852 gPS/gNd, which is much higher than that of conventional rare earth catalysts. The polymerization reaction has an induction period and shows some characteristics of chain polymerization. The polymerization rate is the first order with respect to the concentration of styrene monomer. Addition of FeCl_3 does not suppress the polymerization.
基金The project supported by National Natural Science Foundation of China
文摘Tetranuclear Rh-Co bimetallic cluster was synthesized and characterized by IR and XPS. The properties of the anchored catalysts, its stability and the ligand effect were also studied. The experimental results show that the optimal conditions for the hydroformylation of hexene-1 are as follows: the temperature is 80℃, reaction time 8 h, pressure 5. 88×105 Pa, and molar ratio of H2/CO 1. 2/1. 0. Functional groups attached to the donor atom(N) possess more or less some influence on the catalytic behavior. Compared with the homogeneous cluster, the polymer-supported bimetallic cluster is more stable. After the catalytic reaction, the structure of the anchored catalysts was not destroyed. X-ray photoelectron spectroscopy characterization indicates that there is a weak interaction between the polymer support and the active metals.
基金Financial Support by the National Science Foundation of China,Grant No.:29774039
文摘The polymerization mechanism is described by the conductance change with the time during the polymerization. The mechanism can be explained by the equilibrium feature (i.e. main ion-pairs) between the free ions and the ion-pairs dissociated by the organic salt (-) Sp*(+)(+) CSA*(-) (An asterisk represents the chirality) and the scheme of the polymerization process is described mainly by the charge transfer complexes having chiral induction power.
基金the National Natural Science Foundation of China for financial support (No. 29933050).
文摘Enantioselective alternating copolymerization of carbon monoxide with propylene was carried out using palladium catalyst modified by 1,4-3,6-dianhydro-2,5-dideoxy-2,5-bis (diphenylphosphino)-L-iditol (DDPPI). The chiral diphosphine was proved to be effective at enantioselective copolymerization. Optical rotation, elemental analysis, H-1, C-13-NMR and IR spectra showed that the copolymer was optically active, isotactic, alternating poly(1,4-ketone) structure.
基金This work was financially supported by the State Key Laboratory of Elemento-Organic Chemistry,Nankai University.
文摘Four types of chiral thiazolidine derivatives were synthesized conveniently from natural L-cysteine and showed good enantioselectivity in up to 90% ee in the addition of diethylzine to benzaldehyde. Their enantioselectivity was affected by the bulkiness of R and the thiazolidine ring systems in their molecules.
文摘The neodymium complexes with crosslinked polystyrene containing -CH2SH and -CH2SOCH3 groups, P-CH2SH . NdCl3 and P-CH2SOCH3. NdCl3, were prepared. P-CH2SH . NdCl3 shows no catalytic activity for butadiene polymerization, while P-CH2SOCH3. NdCl3 can catalyze the polymerization of butadiene. The content of cis-1,4-polybutadiene is more than 95%.
文摘Four polymer-supported Fe-Co tetrametallic clusters have been prepared by ion exchange and ligand exchange. Their structures were characterized by IR, UV/visible diffuse reflectance spectra and elemental analysis, and by analogy with the reference cluster PhCH_2NMe_3FeCo_3 (CO)_2 . The four heterogenous clusters were efficient catalysts in the hydroformylation of 1-hexene, turnover numbers amounted to 823 — 924 with the yield of 83.2—92.4% heptyl aldehydes and ratios of normal aldehyde to iso-aldehyde of 1.2—1.6, they are facilitated forming the normal aldehyde in comparison with the homogeneous analogue. For the polymer-supported clusters prepared by ion exchange, the polymer-cation parts had no obvious effect on the activity of the cluster anion. The polymer-phosphine substituted cluster prepared by ligand exchange was more stable than the clusters preparedby ion exchange.
文摘Hydrogenations for olefinic double bonds catalyted by the Pd-Fe2O3/D3520 resin and Pd-Bi2O3/D3520 resin were reported. These catatysts were characterized by IR spectra and XPS methods. The XPS investigation indicated that the-electron transfer from Fe atom in Fe2O3 to Pd, enhanced the hy-drogenation activity of the catalysts,and Bi2O3 drew electrons from Pd, leading to the lowering of the hydrogenation rate. When Pd/Bi atom ratio = 1, the hydrogenation was inhibited entirely. The IR spectra of resin 1)3520 showed no significant changes when Pd and the metallic oxides were supported on the polymer particles. That indicates that there are no obvious inter-actions between Pd (or metallic oxides) and supporter. Finally , a possible hydrogenation mechanism ,was also supposed.
基金Supported by the National Natural Science Foundation of China Natural Science Founclation of Tianjin
文摘A new complex (1) was prepared by mixing pyridinium polystyrylsulfonate resin and aqueous fluoboric acid, followed by being dehydrated. 1 can be used as an acidic catalyst for the acetalization of benzaldehyde with n-butanol with a highly catalytic activity. The characterization and reusability of 1 are discussed.
文摘A bicentral polymer-supported Phase transfer catalyst, polystpyne-suPPorted polyethylene glycol and Pyridinium salt (PS-Py-PEG-400),synthesized with ohloromethylated polystyrene as supporter on which PEG and Pyridinium salt were immobilized successively. Its catalytic activity was tested for the reauction of solid potassium acetate and benzyl bromide by GC analysis. It was found that the bicentral catalyst performed higher activity than the monocentral PS-PEG-400 and PS-Py.
文摘Chloranil through condensation reaction with vicinal diamine such as diaminomaleonitrile produced heterocyclic monomer, p-benzoquinonebis[2,3-b; 2',3'-b']pyrazine-5,6-dinitrile. The tetranitrile monomer was cyclo-tetramerised using lithium/pentanol and acetic acid affording the corresponding tetrap-benzoquinone bis[2,3-b; 2',3'-b']pyrazinoporphyrazine)]- based network polymer (2H-Pz). The tetranitril monomer was cyclo-tetramerised using metal salt and quinoline affording the corresponding porphyrazinato-metal II-based network polymers (M-Pz), M = Co, Ni or Cu. Elemental analytical results, IR and NMR spectral data of the prepared molecules are consistent with their assigned formulations. Molecular masses and metal contents of the synthesized polymers proved to be of high molecular masses which confirm the efficiency of tetramerization polymerization and complexation reactions. The prepared pyrazinoporphyrazines were used as efficient catalysts for the oxidation of thiophenol and benzylthiol to their disulfides in the presence of air atmosphere. The results of oxidation of thiophenol and benzylthiol show that after 15 min the maximum yield of the corresponding disulfides reached 95%, 91%, respectively.