期刊文献+
共找到6,799篇文章
< 1 2 250 >
每页显示 20 50 100
Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries 被引量:2
1
作者 Masytha Nuzula Ramdhiny Ju‐Won Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期140-163,共24页
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode... Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle. 展开更多
关键词 CONDUCTIVITY lithium‐ion batteries molecular interactions polymeric binders self‐healability Si anodes
下载PDF
Preparation and performance evaluation of the slickwater using novel polymeric drag reducing agent with high temperature and shear resistance ability
2
作者 Ming-Wei Zhao Zhen-Feng Ma +5 位作者 Cai-Li Dai WeiWu Yong-Quan Sun Xu-Guang Song Yun-Long Cheng Xiang-Yu Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1113-1121,共9页
Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performa... Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications. 展开更多
关键词 Unconventional resources polymeric drag reducing agent Slickwater High drag reduction rate Temperature resistance
下载PDF
Alkali Metal Ion Substituted Carboxymethyl Cellulose as Anode Polymeric Binders for Rapidly Chargeable Lithium-Ion Batteries
3
作者 Seoungwoo Byun Zhu Liu +9 位作者 Dong Ok Shin Kyuman Kim Jaecheol Choi Youngjoon Roh Dahee Jin Seungwon Jung Kyung-Geun Kim Young-Gi Lee Stefan Ringe Yong Min Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期77-82,共6页
The increasing demand for short charging time on electric vehicles has motivated realization of fast chargeable lithium-ion batteries(LIBs).However,shortening the charging time of LIBs is limited by Li^(+)intercalatio... The increasing demand for short charging time on electric vehicles has motivated realization of fast chargeable lithium-ion batteries(LIBs).However,shortening the charging time of LIBs is limited by Li^(+)intercalation process consisting of liquid-phase diffusion,de-solvation,SEI crossing,and solid-phase diffusion.Herein,we propose a new strategy to accelerate the de-solvation step through a control of interaction between polymeric binder and solvent-Li^(+)complexes.For this purpose,three alkali metal ions(Li^(+),Na^(+),and K^(+))substituted carboxymethyl cellulose(Li-,Na-,and K-CMC)are prepared to examine the effects of metal ions on their performances.The lowest activation energy of de-solvation and the highest chemical diffusion coefficient were observed for Li-CMC.Specifically,Li-CMC cell with a capacity of 3 mAh cm^(-2)could be charged to>95%in 10 min,while a value above>85%was observed after 150 cycles.Thus,the presented approach holds great promise for the realization of fast charging. 展开更多
关键词 de-solvation digital twins fast charging graphite anodes polymeric binders
下载PDF
Boosting the cycling stability of all-solid-state lithium metal batteries through MOF-based polymeric protective layers
4
作者 Hongfei Bao Diancheng Chen +9 位作者 Jiaqi Cao Pengfeng Jiang Kaili Li Runtao Liu Yuling Zhao Yichun Zheng Beiqi Liao Yaming Zhang Xia Lu Yang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期511-518,I0011,共9页
Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing wi... Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing with lithium metal,hindering practical applications.Herein,we introduce a flexible metal-organic framework(MOF:NUS-6)-incorporated polymeric layer,denoted as NP,designed to protect the sodium superionic conductor(NASICON)-type Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)electrolyte from Li metal anodes.The NP matrix establishes a soft interface with the LATP surface,effectively reducing voids and gaps that may arise between the LATP electrolyte and Li metal.Moreover,the MOF component in NP enhances ionic conductivity,offers abundant Li^(+)transport sites,and provides hierarchical ion channels,ensuring a homogeneous Li^(+)flow and thus effectively inhibiting Li dendrite formation.Utilizing NP,we fabricate Li symmetrical cells cycled for over 1600 h at 0.2 mA cm^(-2)and all-solid-state LiINP-LATPI LiFePO_(4)batteries,achieving a remarkable 99.3%capacity retention after 200 cycles at 0.2 C.This work outlines a general strategy for designing long-lasting and stable solid-state Li metal batteries. 展开更多
关键词 All-solid-state Li metal battery MOF-based polymeric layer Li dendrite Interfacial contact LATP electrolyte stability
下载PDF
STAT3-Dependent Effects of Polymeric Immunoglobulin Receptor in Regulating Interleukin-17 Signaling and Preventing Autoimmune Hepatitis
5
作者 Ting Li Tongtong Pan +14 位作者 Nannan Zheng Xiong Ma Xiaodong Wang Fang Yan Huimian Jiang Yuxin Wang Hongwei Lin Jing Lin Huadong Zhang Jia Huang Lingming Kong Anmin Huang Qingxiu Liu Yongping Chen Dazhi Chen 《Engineering》 SCIE EI CAS CSCD 2024年第5期209-222,共14页
One-third of patients with autoimmune hepatitis(AIH)have cirrhosis at the time of diagnosis.The relevance of these variables,although unknown,is believed to be critical in AIH because of suspected interactions between... One-third of patients with autoimmune hepatitis(AIH)have cirrhosis at the time of diagnosis.The relevance of these variables,although unknown,is believed to be critical in AIH because of suspected interactions between the gut microbiome and genetic factors.Dysbiosis of the gut flora and elevated polymeric immunoglobulin receptor(pIgR)levels have been observed in both patients and mouse models.Moreover,there is a direct relationship between pIgR expression and transaminase levels in patients with AIH.In this study,we aimed to explore how pIgR influences the secretion of regenerating islet-derived 3 beta(Reg3b)and the flora composition in AIH using in vivo experiments involving patients with AIH and a concanavalin A-induced mouse model of AIH.Reg3b expression was reduced in pIgR gene(Pigr)-knockout mice compared to that in wild-type mice,leading to increased microbiota disruption.Conversely,exogenous pIgR supplementation increased Reg3b expression and maintained microbiota homeostasis.RNA sequencing revealed the participation of the interleukin(IL)-17 signaling pathway in the regulation of Reg3b through pIgR.Furthermore,the introduction of external pIgR could not restore the imbalance in gut microbiota in AIH,and the decrease in Reg3b expression was not apparent following the inhibition of signal transducer and activator of transcription 3(STAT3).In this study,pIgR facilitated the upregulation of Reg3b via the STAT3 pathway,which plays a crucial role in preserving the balance of the intestinal microbiota in AIH.Through this research,we discovered new molecular targets that can be used for the diagnosis and treatment of AIH. 展开更多
关键词 Autoimmune hepatitis polymeric immunoglobulin receptor Regenerating islet-derived 3 beta Intestinal microbiota Signal transducer and activator of transcription 3
下载PDF
Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances
6
作者 Lan Lu Yuting Zhao +4 位作者 Mingxing Li Xiaobo Wang Jie Zhu Li Liao Jingya Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期506-524,共19页
Extracellular polymeric substances(EPS)constitutes crucial elements within bacterial biofilms,facili-tating accelerated antimicrobial resistance and conferring defense against the host's immune cells.Developing pr... Extracellular polymeric substances(EPS)constitutes crucial elements within bacterial biofilms,facili-tating accelerated antimicrobial resistance and conferring defense against the host's immune cells.Developing precise and effective antibiofilm approaches and strategies,tailored to the specific charac-teristics of EPS composition,can offer valuable insights for the creation of novel antimicrobial drugs.This,in turn,holds the potential to mitigate the alarming issue of bacterial drug resistance.Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias,which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds.Considering the pivotal role of EPS in biofilm functionality,it is imperative for EPS research to delve deeper into the analysis of intricate compositions,moving beyond the current focus on polymeric materials.This ne-cessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches.In this study,we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions.Additionally,novel strategies aimed at targeting EPS to enhance biofilm penetration were explored,with a specific focus on high-lighting the limitations associated with colorimetric methods.Furthermore,we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges.This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS,thereby inhibiting biofilm formation.This insight opens up a new avenue for exploration within this research domain. 展开更多
关键词 Analytic strategies and approaches Composition characterization Extracellular polymeric substances(EPS) Promoting biofilm penetration
下载PDF
Evaluation of Rhizobium tropici-Derived Extracellular Polymeric Substances on Selected Soil Properties, Seed Germination, and Growth of Black-Eyed Peas (Vigna unguiculata)
7
作者 Jonathan Alunge Metuge Erneste Havugimana +2 位作者 Jean Rugandirababisha Zachary N. Senwo Marie Chantal Mutimawurugo 《Agricultural Sciences》 2024年第5期548-564,共17页
Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility ... Rhizobium tropici-derived extracellular polymeric substances (EPS) have been used in soils to enhance soil structures and mitigate soil erosions. However, information on their use to improve soil health and fertility indicators, and plant growth is limited. In a greenhouse study, we investigated their effects on some soil health, soil fertility indices, and the growth of black-eyed peas (Vigna unguiculate). Results showed that soils incubated with EPS significantly increased basal soil respiration, soil microbial biomass, permanganate oxidizable carbon (POC), and potentially mineralizable nitrogen (PMN). The EPS shifted microbial populations from bacteria to fungi and Gram (−ve) to Gram ( ve) bacteria. However, it had little or no effects on soil pH, soil organic matter (SOM), and cation exchange capacity (CEC). The EPS decreased soil moisture loss, increased soil aggregate stability, but delayed blacked-eyed peas germinations in the soils. At 0.1% (w/w) concentrations in soils, there was increase in plant root nodulations and vegetative growth. This study was carried out within 40 days of incubating soils with EPS or growing the black-eyed peas in a greenhouse study. The plant growth parameters were taken before flowering and fruiting. Further studies of the effects of incubating soils with the extracellular polymeric substances on plant growth. Soil microbial biomass, microbial diversities, and other soil fertility indices are deemed necessary. 展开更多
关键词 Rhizobium tropici Extracellular polymeric Substances Soil Respiration Soil Microbial Biomass Black-Eyed Peas
下载PDF
Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
8
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay J.Bandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim... Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues. 展开更多
关键词 Biodegradable elastomer Conductive polymer composites Biomedical device Transient electronics
下载PDF
Improved Plasmonic Hot‑Electron Capture in Au Nanoparticle/Polymeric Carbon Nitride by Pt Single Atoms for Broad‑Spectrum Photocatalytic H_(2)Evolution 被引量:4
9
作者 Manyi Gao Fenyang Tian +3 位作者 Xin Zhang Zhaoyu Chen Weiwei Yang Yongsheng Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期423-435,共13页
ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,b... ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction. 展开更多
关键词 polymeric carbon nitride Au nanoparticles Pt single atoms Photocatalytic H2 evolution Broad-spectrum photocatalysts
下载PDF
Advances in the development of amorphous solid dispersions:The role of polymeric carriers 被引量:3
10
作者 Jie Zhang Minshan Guo +1 位作者 Minqian Luo Ting Cai 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第4期45-79,共35页
Amorphous solid dispersion(ASD)is one of the most effective approaches for delivering poorly soluble drugs.In ASDs,polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level.To p... Amorphous solid dispersion(ASD)is one of the most effective approaches for delivering poorly soluble drugs.In ASDs,polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level.To prepare the solid dispersions,there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations.Polymer selection is of great importance because it influences the stability,solubility and dissolution rates,manufacturing process,and bioavailability of the ASD.This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers,formulation designs and preparation methods.Furthermore,considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed. 展开更多
关键词 Amorphous solid dispersions polymeric carriers STABILITY DISSOLUTION Bioavailbility Molecular interactions
下载PDF
Relaxin-encapsulated polymeric metformin nanoparticles remodel tumor immune microenvironment by reducing CAFs for efficient triple-negative breast cancer immunotherapy 被引量:2
11
作者 Hongyan Zhang Liying Chen +8 位作者 Yue Zhao Ningchao Luo Jingbin Shi Shujun Xu Lisha Ma Menglin Wang Mancang Gu Chaofeng Mu Yang Xiong 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期124-136,共13页
Cancer-associated fibroblasts(CAFs)are one of the most abundant stromal cells in the tumor microenvironment which mediate desmoplastic response and are the primary driver for an immunosuppressive microenvironment,lead... Cancer-associated fibroblasts(CAFs)are one of the most abundant stromal cells in the tumor microenvironment which mediate desmoplastic response and are the primary driver for an immunosuppressive microenvironment,leading to the failure of triple-negative breast cancer(TNBC)immunotherapy.Therefore,depleting CAFs may enhance the effect of immunotherapy(such as PD-L1 antibody).Relaxin(RLN)has been demonstrated to significantly improve transforming growth factor-β(TGF-β)induced CAFs activation and tumor immunosuppressive microenvironment.However,the short half-life and systemic vasodilation of RLN limit its in vivo efficacy.Here,plasmid encoding relaxin(pRLN)to locally express RLN was delivered with a new positively charged polymer named polymeric metformin(PolyMet),which could increase gene transfer efficiency significantly and have low toxicity that have been certified by our lab before.In order to improve the stability of pRLN in vivo,this complex was further formed lipid poly-γ-glutamic acid(PGA)/PolyMetpRLN nanoparticle(LPPR).The particle size of LPPR was 205.5±2.9 nm,and the zeta potential was+55.4±1.6 mV.LPPR displayed excellent tumor penetrating efficacy and weaken proliferation of CAFs in 4T1luc/CAFs tumor spheres in vitro.In vivo,it could reverse aberrantly activated CAFs by decreasing the expression of profibrogenic cytokine and remove the physical barrier to reshape the tumor stromal microenvironment,which enabled a 2.2-fold increase in cytotoxic T cell infiltration within the tumor and a decrease in immunosuppressive cells infiltration.Thus,LPPR was observed retarded tumor growth by itself in the 4T1 tumor bearing-mouse,and the reshaped immune microenvironment further led to facilitate antitumor effect when it combined with PD-L1 antibody(aPD-L1).Altogether,this study presented a novel therapeutic approach against tumor stroma using LPPR to achieve a combination regimen with immune checkpoint blockade therapy against the desmoplastic TNBC model. 展开更多
关键词 Cancer-associated fibroblasts Plasmid encoding relaxin Lipid nanoparticles polymeric metformin PD-L1 antibody
下载PDF
An Intelligent Manufacturing Platform of Polymers:Polymeric Material Genome Engineering 被引量:1
12
作者 Liang Gao Liquan Wang +1 位作者 Jiaping Lin Lei Du 《Engineering》 SCIE EI CAS CSCD 2023年第8期31-36,共6页
Polymeric materials with excellent performance are the foundation for developing high-level technology and advanced manufacturing.Polymeric material genome engineering(PMGE)is becoming a vital platform for the intelli... Polymeric materials with excellent performance are the foundation for developing high-level technology and advanced manufacturing.Polymeric material genome engineering(PMGE)is becoming a vital platform for the intelligent manufacturing of polymeric materials.However,the development of PMGE is still in its infancy,and many issues remain to be addressed.In this perspective,we elaborate on the PMGE concepts,summarize the state-of-the-art research and achievements,and highlight the challenges and prospects in this field.In particular,we focus on property estimation approaches,including property proxy prediction and machine learning prediction of polymer properties.The potential engineering applications of PMGE are discussed,including the fields of advanced composites,polymeric materials for communications,and integrated circuits. 展开更多
关键词 polymeric materials Materials genome approach Machine learning Property prediction Rational design
下载PDF
A fast ionic transport copolymeric network for stable quasi-solid lithium metal battery 被引量:1
13
作者 Weiqi Mai Qiaoying Cao +4 位作者 Mingtao Zheng Yong Xiao Hang Hu Yingliang Liu Yeru Liang 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期491-500,I0013,共11页
Solid-state lithium(Li) metal batteries overwhelm the lithium-ion batteries by harvesting high energy from Li metal anode with ultrahigh capacities and gaining excellent safety from solid electrolytes.However,the unco... Solid-state lithium(Li) metal batteries overwhelm the lithium-ion batteries by harvesting high energy from Li metal anode with ultrahigh capacities and gaining excellent safety from solid electrolytes.However,the uncontrollable solvents in solid electrolytes usually aggravate poor interfacial contact with lithium metal anode and deteriorate Li^(+) pathways.Here a copolymeric network-structured ion conductor by rationally integrating cellulose nanofibril as a two-in-one functional material is employed to anchor the solvent.Taking advantages of tightly anchoring of cellulose nanofibril to solvent,the asconstructed quasi-solid polymer-based electrolyte offers rapid Li^(+) transport channels and realizes effective Li-dendrite suppression,which enables high ionic conductivity of 1.93 × 10^(-3)S cm^(-1) at room temperature,long-term Li plating/stripping over 1900 h,and high capacity retention of 99%.This work provides a fresh strategy for creating solid electrolytes that meet both high ionic conductivity and interfacial stability requirements for practical solid-state lithium metal battery. 展开更多
关键词 Lithium metal battery Quasi-solid polymer electrolyte Cellulose nanofibrils Solvent anchoring Copolymeric network
下载PDF
Role of extracellular polymeric substances in resistance to allelochemical stress on Microcystis aeruginsosa and its mechanism
14
作者 Li YIN Ying XU +7 位作者 Desheng KONG Juan WANG Kaipian SHI Yong ZHANG Huan HE Shaogui YANG Lixiao NI Shiyin LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2219-2231,共13页
Using allelochemicals to suppress cyanobacteria growth is a prospective method for its high efficiency and ecological safety.However,the suppression efficiency is affected inevitably by the extracellular polymeric sub... Using allelochemicals to suppress cyanobacteria growth is a prospective method for its high efficiency and ecological safety.However,the suppression efficiency is affected inevitably by the extracellular polymeric substances(EPS)produced by cyanobacteria,and the knowledge about the roles of EPS in resistance to allelochemical stress is scarce.For the study,two typical anti-cyanobacterial allelochemicals were adopted to investigate the role of EPS in resistance to allelochemical stress on Microcystis aeruginosa.Results show that EPS was crucial in alleviating the toxicity of allelochemicals to algae,especially in stabilizing the metabolism and photosynthetic activity of algal cells.The aggregation rate of algal cells increased with the increase of EPS secretion,which alleviated the stress of allelopathy.Tryptophan proteins and humic acids in EPS provided a binding site for allelochemicals,and the EPS-allelochemicals complex were formed by chemical bonding.This study improved our comprehension of the role of EPS in algal inhibition by allelochemicals. 展开更多
关键词 ALLELOCHEMICALS extracellular polymeric substances CYANOBACTERIA Microcystis aeruginosa ALLELOPATHY
下载PDF
Effect of extracellular polymeric substances on Dolichospermum aggregation during temperature rise
15
作者 Dailan DENG Han MENG +6 位作者 You MA Yongqi GUO Zixuan WANG Huan HE Khan WAQAS Jin’e LIU Limin ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2208-2218,共11页
Dolichospermum,a typical model filamentous of cyanobacteria,has the potential to cause severely bloom.Extracellular polymeric substances(EPSs)are considered to influence the aggregation of the algae,and temperature is... Dolichospermum,a typical model filamentous of cyanobacteria,has the potential to cause severely bloom.Extracellular polymeric substances(EPSs)are considered to influence the aggregation of the algae,and temperature is a significant factor affecting EPSs secretion.However,the mechanism of how EPSs affects the aggregation of Dolichospermum is still unclear because the structure and composition of EPSs are complex.In this study,the effects of EPSs on the aggregation of Dolichospermum during the rise of temperature(7-37℃)were determined.The results showed that the concentration of extracellular polysaccharides and proteins changed significantly with increasing temperature(P<0.01).Firstly,during the increasing temperature,the polysaccharide content of EPSs increased from 20.34 to 54.64 mg/L,and the polysaccharides in the soluble EPS(S-EPS)layer changed significantly.The protein content reached maximum value at 21℃(14.52 mg/L)and varied significantly in S-EPS and loosely bound EPS(LB-EPS).In the EPSs matrix,humus substances and protein were main components of S-EPS and LB-EPS,and protein was the main component of tightly bound EPS(TB-EPS).Secondly,the cell density of Dolichospermum increased during the temperature rise while the aggregation ratio decreased.Moreover,zeta potential and surface thermodynamic analysis of Dolichospermum revealed that the interfacial free energy and electrostatic repulsion increased gradually with increasing temperature,which further reduced the aggregation of Dolichospermum.Finally,principal component analysis(PCA)analysis showed the aggregation of Dolichospermum was directly related to the changes of protein in EPSs(especially S-EPS and LB-EPS)and zeta potential,and polysaccharides in EPSs inhibited the aggregation of Dolichospermum.Based on these results,it was illustrated that the composition and concentration of EPSs affected the cell surface properties of Dolichospermum with the change of temperature and thus affected the aggregation of Dolichospermum. 展开更多
关键词 TEMPERATURE Dolichospermum extracellular polymeric substances AGGREGATION
下载PDF
Dissolvable polymeric microneedles loaded with aspirin for antiplatelet aggregation
16
作者 Baorui Wang Suohui Zhang +5 位作者 Guozhong Yang Zequan Zhou Mengzhen Xing Han Liu Aguo Cheng Yunhua Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第1期108-119,共12页
To reduce mucosal damage in the gastrointestinal tract caused by aspirin,we developed a dissolvable polymeric microneedle(MN)patch loaded with aspirin.Biodegradable polymers provide mechanical strength to the MNs.The ... To reduce mucosal damage in the gastrointestinal tract caused by aspirin,we developed a dissolvable polymeric microneedle(MN)patch loaded with aspirin.Biodegradable polymers provide mechanical strength to the MNs.The MN tips punctured the cuticle of the skin and dissolved when in contact with the subcutaneous tissue.The aspirin in the MN patch is delivered continuously through an array of micropores created by the punctures,providing a stable plasma concentration of aspirin.The factors affecting the stability of aspirin during MNs fabrication were comprehensively analyzed,and the hydrolysis rate of aspirin in the MNs was less than 2%.Compared to oral administration,MN administration not only had a smoother plasma concentration curve but also resulted in a lower effective dose of antiplatelet aggregation.Aspirin-loaded MNs were mildly irritating to the skin,causing only slight erythema on the skin and recovery within 24 h.In summary,aspirin-loaded MNs provide a new method to reduce gastrointestinal adverse effects in patients requiring aspirin regularly. 展开更多
关键词 ASPIRIN Transdermal drug delivery polymeric microneedles HYDROLYSIS Antiplatelet aggregation
下载PDF
Synthesis, Characterization and Properties of Polymeric p-Benzoyl-4,4'-Diaminobenzoylaniline
17
作者 Chundong Mi Menglan Yuan +2 位作者 Yuchen Zhang He Li Qianfeng Zhang 《Journal of Materials Science and Chemical Engineering》 2023年第8期33-42,共19页
An aromatic polyamide was synthesized by low-temperature poly-condensation reaction from terephthaloyl chloride and 4,4'-diaminobenzanilide (4,4'-DABA). The synthesized polyamide had a characteristic peak of c... An aromatic polyamide was synthesized by low-temperature poly-condensation reaction from terephthaloyl chloride and 4,4'-diaminobenzanilide (4,4'-DABA). The synthesized polyamide had a characteristic peak of carbon atoms in the amide group at 166 ppm, which was demonstrated by the solid nuclear magnetic resonance carbon spectrum. It was shown to be the stretching vibration absorption peak of the amide N-H bond at 3342 cm<sup>−1</sup> by Fourier infrared (FT-IR) spectroscopy. It was obtained that the energy band near 1100 - 1276 cm<sup>−1</sup> belongs to the absorption peak of the para-substituted benzene ring and the band near 2977 cm<sup>−1</sup> was the C-H stretching vibration peak of the benzene ring by Raman spectroscopy. The molecular structure of the synthesized polyamide compound was confirmed by FT-IR, Raman, and solid <sup>13</sup>C-NMR spectroscopies. It was proved that the polymer is stable up to 300˚C and has a relatively high stability by the thermogravimetric analysis. It was also confirmed by the fluorescence spectrum that it has a strong blue fluorescence near 420 nm. The morphological characteristics of the polymer were further demonstrated by electron scanning electron microscopy (SEM). The properties of polymeric p-benzoyl-4,4'-diaminobenzoyl-aniline were found to emit strong blue fluorescence and have good thermal stability, making it a promising functional material for fluorescence in the blue region with potential for large-scale applications. 展开更多
关键词 Aromatic Polyamide Thermogravimetric Analysis Heat Resistance polymeric p-Benzoyl-4 4'-Diaminobenzoylaniline
下载PDF
Reliability Based Analysis of Ground Improvement Using a Polymeric Chemical Stabilizer
18
作者 Bright Worlu Ify L. Nwaogazie 《Open Journal of Civil Engineering》 CAS 2023年第1期127-138,共12页
In view of the challenges posed by the nature of expansive soil to structural stability which makes it necessary in some cases to improve the soils before structures can be placed on them, there is a need to investiga... In view of the challenges posed by the nature of expansive soil to structural stability which makes it necessary in some cases to improve the soils before structures can be placed on them, there is a need to investigate modern trends in ground improvement techniques in order to determine their reliability. This study is thus aimed at using the reliability based approach to analyze the use of polyvinyl alcohol (PVA) in combination with 1,2,3,4 Butane-tetracarboxylic acid (BTCA) for ground improvement. This study is necessary given the challenges posed by the nature of expansive soil to structural stability which makes it necessary in some cases to improve the soils before structures can be placed on them. Simplex lattice design was employed to build the design of experiment before experimental investigations were carried out on the PVA-BTCA treated soft soils. Reliability indices were computed on the basis of the 28<sup>th</sup> day unconfined compressive strength (UCS) of the treated soil. Reliability index models were developed using the Scheffe’s technique and optimized using excel solver. From analysis of results, reliability model developed proved adequate at 5% level of significance. PVA-BTCA combination provided a potential reliability or probability of success of 99.936% at components combination of: 98.4256% for soil, 1.2352% for PVA, 0.3392% for BTCA and 15.9934% for water. It was therefore recommended that financial implications of using PVA-BTCA for stabilization be compared to those of conventional methods, in order to compare their performance-cost ratio. 展开更多
关键词 RELIABILITY Polyvinyl Alcohol (PVA) Butane-tetracarboxylic Acid (BTCA) polymeric Chemical Scheffe’s Simplex Technique
下载PDF
Synthesis, Characterization and Properties of Polymeric p-Benzoyl-4,4'-Diaminobenzoylaniline
19
作者 Chundong Mi Menglan Yuan +2 位作者 Yuchen Zhang He Li Qianfeng Zhang 《Journal of Modern Physics》 2023年第8期33-42,共26页
An aromatic polyamide was synthesized by low-temperature poly-condensation reaction from terephthaloyl chloride and 4,4'-diaminobenzanilide (4,4'-DABA). The synthesized polyamide had a characteristic peak of c... An aromatic polyamide was synthesized by low-temperature poly-condensation reaction from terephthaloyl chloride and 4,4'-diaminobenzanilide (4,4'-DABA). The synthesized polyamide had a characteristic peak of carbon atoms in the amide group at 166 ppm, which was demonstrated by the solid nuclear magnetic resonance carbon spectrum. It was shown to be the stretching vibration absorption peak of the amide N-H bond at 3342 cm<sup>−1</sup> by Fourier infrared (FT-IR) spectroscopy. It was obtained that the energy band near 1100 - 1276 cm<sup>−1</sup> belongs to the absorption peak of the para-substituted benzene ring and the band near 2977 cm<sup>−1</sup> was the C-H stretching vibration peak of the benzene ring by Raman spectroscopy. The molecular structure of the synthesized polyamide compound was confirmed by FT-IR, Raman, and solid <sup>13</sup>C-NMR spectroscopies. It was proved that the polymer is stable up to 300˚C and has a relatively high stability by the thermogravimetric analysis. It was also confirmed by the fluorescence spectrum that it has a strong blue fluorescence near 420 nm. The morphological characteristics of the polymer were further demonstrated by electron scanning electron microscopy (SEM). The properties of polymeric p-benzoyl-4,4'-diaminobenzoyl-aniline were found to emit strong blue fluorescence and have good thermal stability, making it a promising functional material for fluorescence in the blue region with potential for large-scale applications. 展开更多
关键词 Aromatic Polyamide Thermogravimetric Analysis Heat Resistance polymeric p-Benzoyl-4 4'-Diaminobenzoylaniline
下载PDF
Relationship and effect of redox potential,jarosites and extracellular polymeric substances in bioleaching chalcopyrite by acidithiobacillus ferrooxidans 被引量:13
20
作者 余润兰 钟代立 +3 位作者 苗雷 吴发登 邱冠周 顾国华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1634-1640,共7页
The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different condition... The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly. 展开更多
关键词 extracellular polymeric substances CHALCOPYRITE BIOLEACHING jarosites redox potential
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部