期刊文献+
共找到325篇文章
< 1 2 17 >
每页显示 20 50 100
Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO_4 polymeric electrolyte by positron annihilating lifetime spectroscopy
1
作者 龚静 宫振丽 +3 位作者 闫晓丽 高舒 张忠良 王波 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期478-484,共7页
The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite(OREC) content and temperature in a range from 160 K to 300 K.According to the variation of ortho-po... The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite(OREC) content and temperature in a range from 160 K to 300 K.According to the variation of ortho-positronium(o-Ps) lifetime with temperature,the glassy transition temperature is determined.The continuous maximum entropy lifetime(MELT) analysis clearly shows that the OREC and temperature have important effects on o-Ps lifetime and free volume distribution.The experimental results show that the temperature dependence of ionic conductivity obeys the Vogel-Tammann-Fulcher(VTF) and Williams-Landel-Ferry(WLF) equations,implying a free-volume transport mechanism.A linear least-squares procedure is used to evaluate the apparent activation energy related to the ionic transport in the VTF equation and several important parameters in the WLF equation.It is worthwhile to notice that a direct linear relationship between the ionic conductivity and free volume fraction is established using the WLF equation based on the free volume theory for nanocomposite electrolyte,which indicates that the segmental chain migration and ionic migration and diffusion could be explained by the free volume theory. 展开更多
关键词 POSITRON free volume polymeric electrolyte ionic conduction
下载PDF
Thin polymer electrolyte with MXene functional layer for uniform Li^(+) deposition in all-solid-state lithium battery 被引量:1
2
作者 Weijie Kou Yafang Zhang +3 位作者 Wenjia Wu Zibiao Guo Quanxian Hua Jingtao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期71-80,共10页
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ... Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery. 展开更多
关键词 MXene nanosheet Laminar functional layer Thin polymer electrolyte Dendrite-free Liþdeposition All-solid-state lithium battery
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
3
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies Gel polymer electrolytes Lithium metal batteries
下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
4
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
–C≡N functionalizing polycarbonate-based solid-state polymer electrolyte compatible to high-voltage cathodes
5
作者 Shuo Ma Yanan Zhang +5 位作者 Donghui Zhang Yating Zhang Wenbin Li Kemeng Ji Zhongli Tang Mingming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期422-431,共10页
Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves t... Solid-state polymer electrolytes(SPEs) capable of withstanding high voltage are considered to be key for next-generation energy storage devices with inherent safety as well as high energy density.This study involves the rational design of solid-state-C≡N functionalized P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs and its synthesis by in-situ free radical polymerization of vinyl ethylene carbonate(VEC) and 2-cyanoethyl acrylate(CEA).In situ polymerization yields electrode/electrolyte interfaces with low interfacial resistance,forming a stable SEI layer enriched with LiF,Li_(3)N,and RCOOLi,ensuring stable Li plating/stripping for over 1400 h.The-C≡N moiety renders the αH on the adjacent αC positively charged,thereby endowing it with the capability to anchor TFSI^(-).Simultaneously,the incorporation of-C≡N moiety diminishes the electron-donating ability of the C=O,C-O-C,and-C≡N functional groups,facilitating not only the ion conductivity enhancement but also a more rapid Li^(+)migration proved by DFT theoretical calculations and Raman spectroscopy.At room temperature,t_(Li+) of 0.60 for P(VEC_1-CEA_(0.3))/LiTFSI@CE SPEs is achieved when the ionic conductivity σ_(Li+)is 2.63×10^(-4) S cm^(-1) and the electrochemical window is expanded to5.0 V.Both coin cells with high-areal-loading cathodes and the 6.5-mAh pouch cell,exhibit stable charge/discharge cycling.At 25℃,the 4.45-V Li|P(VEC_1-CEA_(0.3))/LiTFSI@CE|LiCoO_(2) battery performs stable cycling over 200 cycles at 0.2 C,with a capacity retention of 82.1%. 展开更多
关键词 Lithium-metal batteries HIGH-VOLTAGE Solid-state polymer electrolytes –C≡N In situ polymerization
下载PDF
Incombustible solid polymer electrolytes:A critical review and perspective
6
作者 Kai Wu Jin Tan +4 位作者 Zhenfang Liu Chenguang Bao Ao Li Qi Liu Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期264-281,I0007,共19页
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens... Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries. 展开更多
关键词 Non-flammable electrolyte Solid polymer electrolyte High safety electrolyte Solid state electrolyte Solid state battery
下载PDF
A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms
7
作者 Yuqi Luo Lu Gao Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期543-556,I0012,共15页
With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantage... With the depletion of fossil fuels and the demand for high-performance energy storage devices,solidstate lithium metal batteries have received widespread attention due to their high energy density and safety advantages.Among them,the earliest developed organic solid-state polymer electrolyte has a promising future due to its advantages such as good mechanical flexibility,but its poor ion transport performance dramatically limits its performance improvement.Therefore,single-ion conducting polymer electrolytes(SICPEs)with high lithium-ion transport number,capable of improving the concentration polarization and inhibiting the growth of lithium dendrites,have been proposed,which provide a new direction for the further development of high-performance organic polymer electrolytes.In view of this,lithium ions transport mechanisms and design principles in SICPEs are summarized and discussed in this paper.The modification principles currently used can be categorized into the following three types:enhancement of lithium salt anion-polymer interactions,weakening of lithium salt anion-cation interactions,and modulation of lithium ion-polymer interactions.In addition,the advances in single-ion conductors of conventional and novel polymer electrolytes are summarized,and several typical highperformance single-ion conductors are enumerated and analyzed in what way they improve ionic conductivity,lithium ions mobility,and the ability to inhibit lithium dendrites.Finally,the advantages and design methodology of SICPEs are summarized again and the future directions are outlined. 展开更多
关键词 Lithium metal batteries Single-ion conductor Polymer electrolytes Ion transport mechanism Li-ion transport number
下载PDF
Anion competition for Li^(+)solvated coordination environments in poly(1,3 dioxolane)electrolyte to enable high-voltage lithium metal solid-state batteries
8
作者 Qiujun Wang Yanqiang Ma +6 位作者 Xiaomeng Jia Di Zhang Zhaojin Li Huilan Sun Qujiang Sun Bo Wang Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期633-641,共9页
Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affect... Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries. 展开更多
关键词 Li-metal batteries Poly(1 3-dioxolane) In situ polymerization Solid-state polymer electrolytes Anion competition
下载PDF
High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers
9
作者 Jinyuan Li Congrong Yang +3 位作者 Haojiang Lin Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期572-578,共7页
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te... Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs. 展开更多
关键词 Fuel cell High-temperature polymer electrolyte membranes Microphase separation Poly(terphenyl piperidinium)s Phosphoric acid
下载PDF
Interpenetrating network-reinforced gel polymer electrolyte for ultra-stable lithium−iodine batteries
10
作者 Ying Jiang Peng Huang +5 位作者 Minman Tong Bingxin Qi Tao Sun Zhongyun Xian Wen Yan Chao Lai 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期234-247,共14页
Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-... Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries. 展开更多
关键词 electrode/electrolyte interface gel polymer electrolytes lithium dendrites lithium−iodine batteries polyiodide shuttle
下载PDF
Mechanism of high Li-ion conductivity in poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network based electrolyte revealed by solid-state NMR
11
作者 Fan Li Tiantian Dong +5 位作者 Yi Ji Lixin Liang Kuizhi Chen Huanrui Zhang Guanglei Cui Guangjin Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期377-383,I0010,共8页
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol... Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues. 展开更多
关键词 ssNMR Lithium-ion mobility CROSS-LINK Solid polymer electrolyte
下载PDF
In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries:Challenges,strategies,and perspectives
12
作者 Zhihui Jia Yong Liu +4 位作者 Haoming Li Yi Xiong Yingjie Miao Zhongxiu Liu Fengzhang Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期548-571,共24页
Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri... Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed. 展开更多
关键词 In-situ polymerization Polyethylene oxide Solid polymer electrolytes Lithium metal anodes
下载PDF
High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells
13
作者 Tong Mu Lele Wang +3 位作者 Qian Wang Yang Wu Patric Jannasch Jingshuai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期512-523,共12页
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped... This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology. 展开更多
关键词 High temperature polymer electrolyte membrane Imidazole-containing polymer Chemical stability Fuel cell
下载PDF
Low-Enthalpy and High-Entropy Polymer Electrolytes for Li-Metal Battery
14
作者 Haitao Zhang Yuchen Wang +6 位作者 Junfeng Huang Wen Li Xiankan Zeng Aili Jia Hongzhi Peng Xiong Zhang Weiqing Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期91-99,共9页
lonic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion-transfer mechanism is needed to improve performance.... lonic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion-transfer mechanism is needed to improve performance.Here we demonstrate the low-enthalpy and high-entropy(LEHE)electrolytes can intrinsically generate remarkably free ions and high mobility,enabling them to efficiently drive lithium-ion storage.The LEHE electrolytes are constructed on the basis of introducing CsPbl_(3)perovskite quantum dots(PQDs)to strengthen PEO@LiTFSI complexes.An extremely stable cycling>1000 h at 0.3 mA cm^(-2)can be delivered by LEHE electrolytes.Also,the as-developed Li|LEHE|LiFePO_(4)cell retains 92.3%of the initial capacity(160.7 mAh g^(-1))after 200 cycles.This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites.It is realized by a dramatic increment in lithium-ion transference number(0.57 vs 0.19)and a significant decline in ion-transfer activation energy(0.14 eV vs 0.22 eV)for LEHE electrolytes comparing with PEO@LiTFSI counterpart.The CsPbl_(3)PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy,which in turn facilitate long-term cycling stability and excellent rate-capability of lithium-metal batteries. 展开更多
关键词 charge concentration gradient lithium dendrites lithium-metal battery low-enthalpy and high-entropy polymer electrolyte
下载PDF
In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries
15
作者 Fuhe Wang Honghao Liu +6 位作者 Yaqing Guo Qigao Han Ping Lou Long Li Jianjie Jiang Shijie Cheng Yuancheng Cao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期51-59,共9页
Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium... Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries. 展开更多
关键词 gel polymer electrolytes hydrogen bonds in situ polymerization lithium metal batteries POLYURETHANE
下载PDF
Interfacial fusion-enhanced 11 μm-thick gel polymer electrolyte for high-performance lithium metal batteries
16
作者 Ying Jiang Xinyue Hong +3 位作者 Peng Huang Jing Shi Wen Yan Chao Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期58-66,共9页
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei... In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries. 展开更多
关键词 Ultrathin gel polymer electrolyte Integrated electrode/electrolyte structure Quasi-solid-state lithium metal battery Solid-electrolyte interphase
下载PDF
Metal-Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries
17
作者 Yusi Lei Liang Yue +4 位作者 Yuruo Qi Yubin Niu Shujuan Bao Jie Song Maowen Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期68-76,共9页
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefor... Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention. 展开更多
关键词 dendrite-free gel polymer electrolyte metal organic framework sodium batteries
下载PDF
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
18
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene Poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
下载PDF
Microstructure of Polymeric Electrolyte PEU LiClO_(4) Studied by Positron Spectroscopy
19
作者 Wang Shaojie Wang Bo +3 位作者 Li Shiqing Dai Yiqun He Chunqing Zhang Shaoping 《Wuhan University Journal of Natural Sciences》 CAS 1997年第2期45-48,共4页
The positron lifetime spectra and ionic conductivity have been measured for polymeric electrolyte PEU LiClO_(4)as a function of temperature in the range of 120 ̄360 K and as a function of Li salt concentration at room... The positron lifetime spectra and ionic conductivity have been measured for polymeric electrolyte PEU LiClO_(4)as a function of temperature in the range of 120 ̄360 K and as a function of Li salt concentration at room temperature.From the temperature dependence of positron annihilation parameters,the glass transition and subtransition are observed,and the glass transition temperature T_(g)of pure PEU is determined to be 240 K.Above T_(g),the free volume hole size dramatically increases with temperature.The variations of positron annihilation parameters and ionic conductivities with respect to Li salt concentration at room temperature indicate that the Li salt mainly diffuses into the amorphous region in PEU LiClO_(4).The increase of Li salt concentration brings about an increase in the number of carried ions,and a reduction of the fractional free volume. 展开更多
关键词 polymeric electrolyte positron spectroscopy free volume structural transition ionic conductivity
下载PDF
Polymer electrolytes for Li-S batteries:Polymeric fundamentals and performance optimization 被引量:5
20
作者 Meifang Jiang Zengqi Zhang +5 位作者 Ben Tang Tiantian Dong Hantao Xu Huanri Zhang Xiaolan Lu Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期300-317,共18页
Lithium-sulfur(Li-S) batteries have been considered as one of the most promising candidates to traditional lithium ion batteries due to its low cost,high theoretical specific capacity(1675 mAh g^(-1)) and energy densi... Lithium-sulfur(Li-S) batteries have been considered as one of the most promising candidates to traditional lithium ion batteries due to its low cost,high theoretical specific capacity(1675 mAh g^(-1)) and energy density(2600 Wh kg^(-1)) of sulfur.Compared with traditional liquid electrolytes,polymer electrolytes(PEs) are ever-increasingly preferred due to their higher safety,superior compatibility,long cycling stability and so on.Despite some progresses on PEs,however,there remain lots of hurdles to be addressed prior to commercial applications.This review begins with native advantages for PEs to replace LEs,and then proposes the ideal requirements for PEs.Furthermore,a brief development history of typical PEs for Li-S batteries is presented to systematically summarize the recent achievements in Li-S batteries with PEs.Noted that the structure-performance relationships of polymer matrixes for PEs are highlighted.Finally,the challenges and opportunities on the future development of PEs are presented.We hold the view that composite polymer electrolytes in virtue of the high ionic conductivity and the compatible interfacial property will be promising solution for high performance Li-S batteries. 展开更多
关键词 Polymer electrolyte Lithium-sulfur batteries Polysulfide shuttle
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部