期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Polymers in Drug Delivery 被引量:3
1
作者 Apurva Srivastava Tejaswita Yadav +3 位作者 Soumya Sharma Anjali Nayak Akanksha Akanksha Kumari Nidhi Mishra 《Journal of Biosciences and Medicines》 2016年第1期69-84,共16页
Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of i... Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of implants for controlled drug delivery. Polymers used in colloidal drug carrier systems, consisting of small particles, show great advantage in drug delivery systems because of optimized drug loading and releasing property. Polymeric nano particulate systems are available in wide variety and have established chemistry. Non toxic, biodegradable and biocompatible polymers are available. Some nano particulate polymeric systems possess ability to cross blood brain barrier. They offer protection against chemical degradation. Smart polymers are responsive to atmospheric stimulus like change in temperature;pressure, pH etc. thus are extremely beneficial for targeted drug delivery. Some polymeric systems conjugated with antibodies/specific biomarkers help in detecting molecular targets specifically in cancers. Surface coating with thiolated PEG, Silica-PEG improves water solubility and photo stability. Surface modification of drug carriers e.g. attachment with PEG or dextran to the lipid bilayer increases their blood circulation time. Polymer drug conjugates such as Zoladex, Lupron Depot, On Caspar PEG intron are used in treatment of prostate cancer and lymphoblastic leukemia. Polymeric Drug Delivery systems are being utilized for controlled drug delivery assuring patient compliance. 展开更多
关键词 polymeric Drug Delivery Biocompatible Polymers Smart Polymers polymeric implants polymeric Drug Formulations
下载PDF
Hydrogels of Chemically Cross-linked and Organ-metallic Complexed Interpenetrating PEG Networks 被引量:1
2
作者 Meng-jiao Dong Shun-li Liu +2 位作者 Lin-hua Tan 岑莲 付国东 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第5期637-648,共12页
The aim of the present work was to prepare a well-defined hydrogel of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. The hydrogel was synthesized via the reaction of copper(I)- c... The aim of the present work was to prepare a well-defined hydrogel of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. The hydrogel was synthesized via the reaction of copper(I)- catalyzed 1,3-dipolar azide-alkyne cycloaddition(CuA AC) with poly(ethylene glycol)-dopamine(PEG-DA)(“Click Chemistry”) followed by complexation with Fe-(3+) ions to crosslink the polymeric network. The chemical composition and morphology of the resulting hydrogels were characterized by Fourier transform infrared spectroscopy(FTIR), -1H-NMR and scanning electron microscopy(SEM). Swelling ratio, mechanical strength, conductivity, and degradation behaviors of the hydrogels were also studied. The effect of the polymer chain length on properties of hydrogels was explored. The compressive strength of hydrogels could reach as high as 13.1 MPa with a conductivity of 2.2 × 10^-5 S·cm^-1. The hydrogels also exhibited excellent thermal stability even at a temperature of 300 °C, whereas degradation of the hydrogel after 7 weeks was observed under a physiological condition. In addition, the hydrogel exhibited a good biocompatibility based on its in vivo performance through an in vivo subcutaneous implantation model. No inflammation and no obvious abnormality of the surrounding tissue were observed when the hydrogel was subcutaneously implanted for 2 weeks. This work is a step towards creating a new pathway to synthesize hydrogels of interpenetrating networks which could be of important applications in the future research. 展开更多
关键词 hydrogel metallic implanted subcutaneous implantation compressive azide chemically polymeric glycol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部