Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and...Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and comprehensive utilization of the solid wastes of rare earth hydrometallurgy slag,electrolysis slag,Fe-based rare earth permanent magnetic materials,Co-based rare earth permanent magnetic materials,rare earth hydrogen storage materials,rare earth polishing powders and rare earth catalysts were ...展开更多
The project for treating MSW of 200 tons each day was built in Yibin, Sichuan Province of China. The disposal processes are: separation and selection of usable resources; compost and fermentation of “heavy” organic ...The project for treating MSW of 200 tons each day was built in Yibin, Sichuan Province of China. The disposal processes are: separation and selection of usable resources; compost and fermentation of “heavy” organic waste (kitchen, garden composting rubbish); incineration of “light” waste (plastic, paper, wood and bamboo etc.) and landfill of inorganic waste. The thermal energy generated in the process can be used as 1/3 of the whole energy for drying fertilizers. In the process, there is no wastewater drainage, and air emissions can be effectively controlled by a series of measures. The sanitary and environmental indicators of disposal site meet the national standards. This project has worked well for two years. It not only disposes of and reduces the MSW, but also retrieves the resource effectively. The organic fertilizer has been applied in the ten thousand acres of fields, with productivity increase by more than 10%.展开更多
This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In...This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In a preliminary experiment, the dried petioles of water hyacinth (DWH) absorbed urine in a mean rate of 18.78 ml·g-1 within 7 d, retrieving about 3.46% urine dissolved solids (UDS). In an advanced experiment, the DWH’s capacity of urine absorption declined from an initial 2.73 L·kg-1·d-1 to 0.68 L·kg-1·d-1, with a requirement of material change in about 25 effective days and an average ratio of 25 (L) to 1 (kg). Phosphorus (P2O5) concentration in the adsorbent increased from 0.46% (material baseline) to 3.14% (end product), suggesting a satisfactory recovery of the element. In field application, the urine was discharged, not in wet weather, onto the DWH via a tube connected to a waterless urinal. There are several ways to use the UDS-DWH as P(K)-rich fertilizer, e.g., making soluble fertilizer for foliage spraying to encourage prolific flowering and fruiting. Apparently, utilization of water hyacinth waste to recover dissolved plant nutrient elements from source-separated urine will benefit the environment in a wide range of perspectives. The herein innovative use of water hyacinth is also expected to be useful in the recycling of certain dissolved hazardous materials.展开更多
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun...In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.展开更多
文摘Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and comprehensive utilization of the solid wastes of rare earth hydrometallurgy slag,electrolysis slag,Fe-based rare earth permanent magnetic materials,Co-based rare earth permanent magnetic materials,rare earth hydrogen storage materials,rare earth polishing powders and rare earth catalysts were ...
文摘The project for treating MSW of 200 tons each day was built in Yibin, Sichuan Province of China. The disposal processes are: separation and selection of usable resources; compost and fermentation of “heavy” organic waste (kitchen, garden composting rubbish); incineration of “light” waste (plastic, paper, wood and bamboo etc.) and landfill of inorganic waste. The thermal energy generated in the process can be used as 1/3 of the whole energy for drying fertilizers. In the process, there is no wastewater drainage, and air emissions can be effectively controlled by a series of measures. The sanitary and environmental indicators of disposal site meet the national standards. This project has worked well for two years. It not only disposes of and reduces the MSW, but also retrieves the resource effectively. The organic fertilizer has been applied in the ten thousand acres of fields, with productivity increase by more than 10%.
文摘This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In a preliminary experiment, the dried petioles of water hyacinth (DWH) absorbed urine in a mean rate of 18.78 ml·g-1 within 7 d, retrieving about 3.46% urine dissolved solids (UDS). In an advanced experiment, the DWH’s capacity of urine absorption declined from an initial 2.73 L·kg-1·d-1 to 0.68 L·kg-1·d-1, with a requirement of material change in about 25 effective days and an average ratio of 25 (L) to 1 (kg). Phosphorus (P2O5) concentration in the adsorbent increased from 0.46% (material baseline) to 3.14% (end product), suggesting a satisfactory recovery of the element. In field application, the urine was discharged, not in wet weather, onto the DWH via a tube connected to a waterless urinal. There are several ways to use the UDS-DWH as P(K)-rich fertilizer, e.g., making soluble fertilizer for foliage spraying to encourage prolific flowering and fruiting. Apparently, utilization of water hyacinth waste to recover dissolved plant nutrient elements from source-separated urine will benefit the environment in a wide range of perspectives. The herein innovative use of water hyacinth is also expected to be useful in the recycling of certain dissolved hazardous materials.
基金support provided by the Nature Science Foundation of Shandong Province(ZR201709180049)the Shandong Key Research and Development Program(2019GSF109023).
文摘In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.