Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile...Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price.展开更多
In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come...In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.展开更多
车-桥耦合系统不可避免的受到系统参数不确定性的影响,为了研究车-桥耦合系统参数随机性的影响,提出了可考虑动态时变系统参数不确定性的PC-ARMAX(Polynomial Chaos expansions and AutoRegressive Moving-Average with eXogenous inpu...车-桥耦合系统不可避免的受到系统参数不确定性的影响,为了研究车-桥耦合系统参数随机性的影响,提出了可考虑动态时变系统参数不确定性的PC-ARMAX(Polynomial Chaos expansions and AutoRegressive Moving-Average with eXogenous inputs)模型。该模型采用ARMAX模型建立了不同系统参数条件下的代理模型,针对不同系统参数条件下代理模型的参数进行混沌多项式展开。在不考虑随机轨道不平顺影响的条件下,分析了车体质量、二系刚度和阻尼等参数随机性对车-桥响应的影响。研究了轨道不平顺随机性和参数不确定性共同作用的影响。结果表明:该模型的预测结果和蒙特卡洛模拟(MCS)的结果吻合,最大误差仅为2%,计算效率较MCS提高了2个~3个数量级;车体质量参数随机对车辆响应的影响最大,系统参数随机性的影响在车-桥耦合振动分析中是不可忽略,且同时考虑参数不确定性和激励随机性的影响是必要的。展开更多
Surrogate models are usually used to perform global sensitivity analysis (GSA) by avoiding a large ensemble of deterministic simulations of the Monte Carlo method to provide a reliable estimate of GSA indices. Howev...Surrogate models are usually used to perform global sensitivity analysis (GSA) by avoiding a large ensemble of deterministic simulations of the Monte Carlo method to provide a reliable estimate of GSA indices. However, most surrogate models such as polynomial chaos (PC) expansions suffer from the curse of dimensionality due to the high-dimensional input space. Thus, sparse surrogate models have been proposed to alleviate the curse of dimensionality. In this paper, three techniques of sparse reconstruc- tion are used to construct sparse PC expansions that are easily applicable to computing variance-based sensitivity indices (Sobol indices). These are orthogonal matching pursuit (OMP), spectral projected gradient for L1 minimization (SPGL1), and Bayesian compressive sensing with Laplace priors. By computing Sobol indices for several benchmark response models including the Sobol function, the Morris function, and the Sod shock tube problem, effective implementations of high-dimensional sparse surrogate construction are exhibited for GSA.展开更多
The ability to decipher the genetic code of different species would lead to significant future scientific achievements in important areas, including medicine and agriculture. The importance of DNA sequencing necessita...The ability to decipher the genetic code of different species would lead to significant future scientific achievements in important areas, including medicine and agriculture. The importance of DNA sequencing necessitated a need for efficient automation of identification of base sequences from traces generated by existing sequencing machines, a process referred to as DNA base-calling. In this paper, a pattern recognition technique was adopted to minimize the inaccuracy in DNA base-calling. Two new frameworks using Artificial Neural Networks and Polynomial Classifiers are proposed to model electropherogram traces belonging to Homo sapiens, Saccharomyces mikatae and Drosophila melanogaster. De-correlation, de-convolution and normalization were implemented as part of the pre-processing stage employed to minimize data imperfections attributed to the nature of the chemical reactions involved in DNA sequencing. Discriminative features that characterize each chromatogram trace were subsequently extracted and subjected to the chosen classifiers to categorize the events to their respective base classes. The models are trained such that they are not restricted to a specific species or to a specific chemical procedure of sequencing. The base- calling accuracy achieved is compared with the exist- ing standards, PHRED (Phil’s Read Editor) and ABI (Applied Biosystems, version2.1.1) KB base-callers in terms of deletion, insertion and substitution errors. Experimental evidence indicates that the proposed models achieve a higher base-calling accuracy when compared to PHRED and a comparable performance when compared to ABI. The results obtained demon- strate the potential of the proposed models for efficient and accurate DNA base-calling.展开更多
This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons th...This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the forward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhancements to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by around 40%.展开更多
A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) a...A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) and Standard Deviation (SD) are evaluated by solving the PC coefficients from a linear system of algebraic equations. The one-dimensional PC with the Legendre polynomials is applied to: (1) stochastic input domain and (2) Cumulative Distribution Function (CDF) image domain, allowing for more flexibility. The PC method is validated with the Monte-Carlo benchmark results in several high-fidelity, CFD-based, ship UQ problems, evaluating the geometrical, operational and environmental uncertainties for the Delft Catamaran 372. Convergence is studied versus PC order P for both EV and SD, showing that high order PC is not necessary for present applications. Comparison is carried out for PC with/without the least square minimization when solving the PC coefficients. The least square minimization, using larger number of CFD samples, is recommended for current test cases. The study shows the potentials of PC method in Robust Design Optimization (RDO) and Reliability-Based Design Optimization (RBDO) of ship hydrodynamic performances.展开更多
文摘Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61673295the Natural Science Foundation of Tianjin under Grant 18JCYBJC85200by the National College Students’ innovation and entrepreneurship project under Grant 201710060041.
文摘In this paper, polynomial fuzzy neural network classifiers (PFNNCs) is proposed by means of density fuzzy c-means and L2-norm regularization. The overall design of PFNNCs was realized by means of fuzzy rules that come in form of three parts, namely premise part, consequence part and aggregation part. The premise part was developed by density fuzzy c-means that helps determine the apex parameters of membership functions, while the consequence part was realized by means of two types of polynomials including linear and quadratic. L2-norm regularization that can alleviate the overfitting problem was exploited to estimate the parameters of polynomials, which constructed the aggregation part. Experimental results of several data sets demonstrate that the proposed classifiers show higher classification accuracy in comparison with some other classifiers reported in the literature.
文摘车-桥耦合系统不可避免的受到系统参数不确定性的影响,为了研究车-桥耦合系统参数随机性的影响,提出了可考虑动态时变系统参数不确定性的PC-ARMAX(Polynomial Chaos expansions and AutoRegressive Moving-Average with eXogenous inputs)模型。该模型采用ARMAX模型建立了不同系统参数条件下的代理模型,针对不同系统参数条件下代理模型的参数进行混沌多项式展开。在不考虑随机轨道不平顺影响的条件下,分析了车体质量、二系刚度和阻尼等参数随机性对车-桥响应的影响。研究了轨道不平顺随机性和参数不确定性共同作用的影响。结果表明:该模型的预测结果和蒙特卡洛模拟(MCS)的结果吻合,最大误差仅为2%,计算效率较MCS提高了2个~3个数量级;车体质量参数随机对车辆响应的影响最大,系统参数随机性的影响在车-桥耦合振动分析中是不可忽略,且同时考虑参数不确定性和激励随机性的影响是必要的。
基金Project supported by the National Natural Science Foundation of China(Nos.11172049 and11472060)the Science Foundation of China Academy of Engineering Physics(Nos.2015B0201037and 2013A0101004)
文摘Surrogate models are usually used to perform global sensitivity analysis (GSA) by avoiding a large ensemble of deterministic simulations of the Monte Carlo method to provide a reliable estimate of GSA indices. However, most surrogate models such as polynomial chaos (PC) expansions suffer from the curse of dimensionality due to the high-dimensional input space. Thus, sparse surrogate models have been proposed to alleviate the curse of dimensionality. In this paper, three techniques of sparse reconstruc- tion are used to construct sparse PC expansions that are easily applicable to computing variance-based sensitivity indices (Sobol indices). These are orthogonal matching pursuit (OMP), spectral projected gradient for L1 minimization (SPGL1), and Bayesian compressive sensing with Laplace priors. By computing Sobol indices for several benchmark response models including the Sobol function, the Morris function, and the Sod shock tube problem, effective implementations of high-dimensional sparse surrogate construction are exhibited for GSA.
文摘The ability to decipher the genetic code of different species would lead to significant future scientific achievements in important areas, including medicine and agriculture. The importance of DNA sequencing necessitated a need for efficient automation of identification of base sequences from traces generated by existing sequencing machines, a process referred to as DNA base-calling. In this paper, a pattern recognition technique was adopted to minimize the inaccuracy in DNA base-calling. Two new frameworks using Artificial Neural Networks and Polynomial Classifiers are proposed to model electropherogram traces belonging to Homo sapiens, Saccharomyces mikatae and Drosophila melanogaster. De-correlation, de-convolution and normalization were implemented as part of the pre-processing stage employed to minimize data imperfections attributed to the nature of the chemical reactions involved in DNA sequencing. Discriminative features that characterize each chromatogram trace were subsequently extracted and subjected to the chosen classifiers to categorize the events to their respective base classes. The models are trained such that they are not restricted to a specific species or to a specific chemical procedure of sequencing. The base- calling accuracy achieved is compared with the exist- ing standards, PHRED (Phil’s Read Editor) and ABI (Applied Biosystems, version2.1.1) KB base-callers in terms of deletion, insertion and substitution errors. Experimental evidence indicates that the proposed models achieve a higher base-calling accuracy when compared to PHRED and a comparable performance when compared to ABI. The results obtained demon- strate the potential of the proposed models for efficient and accurate DNA base-calling.
文摘This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the forward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhancements to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by around 40%.
基金Project supported by the National Natural Science Foundation of China(Grant No.50979060)
文摘A one-dimensional non-intrusive Polynomial Chaos (PC) method is applied in Uncertainty Quantification (UQ) studies for CFD-based ship performances simulations. The uncertainty properties of Expected Value (EV) and Standard Deviation (SD) are evaluated by solving the PC coefficients from a linear system of algebraic equations. The one-dimensional PC with the Legendre polynomials is applied to: (1) stochastic input domain and (2) Cumulative Distribution Function (CDF) image domain, allowing for more flexibility. The PC method is validated with the Monte-Carlo benchmark results in several high-fidelity, CFD-based, ship UQ problems, evaluating the geometrical, operational and environmental uncertainties for the Delft Catamaran 372. Convergence is studied versus PC order P for both EV and SD, showing that high order PC is not necessary for present applications. Comparison is carried out for PC with/without the least square minimization when solving the PC coefficients. The least square minimization, using larger number of CFD samples, is recommended for current test cases. The study shows the potentials of PC method in Robust Design Optimization (RDO) and Reliability-Based Design Optimization (RBDO) of ship hydrodynamic performances.