This article studies the problem of uniqueness of two entire or meromorphic functions whose differential polynomials share a finite set. The results extend and improve on some theorems given in [3].
In this paper we have generalized some results of Rahman [1] by considering the maximum of |f(z)| over a certain lemniscate instead of considering the maximum of|f(z)|, for |z|=r and obtain the analogous results for t...In this paper we have generalized some results of Rahman [1] by considering the maximum of |f(z)| over a certain lemniscate instead of considering the maximum of|f(z)|, for |z|=r and obtain the analogous results for the entire function |f(z)|=Σpk(z) [q(z)]k-1 where q(z) is a polynomial of degree m and pk(z)is of degree m-1. Moreover, we have obtained some inequalities on the lover order, type and lower type in terms of polynomial coefficients.展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds t...Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds themselves are proved. Two other explicit formulae which express the third and fourth kinds Chebyshev expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of their original expansion coefficients are also given. Two new reduction formulae for summing some terminating hypergeometric functions of unit argument are deduced. As an application of how to use Chebyshev polynomials of the third and fourth kinds for solving high-order boundary value problems, two spectral Galerkin numerical solutions of a special linear twelfth-order boundary value problem are given.展开更多
In this paper, we deal with the uniqueness problems on entire and meromorphic functions con- cerning differential polynomials that share fixed-points. Moreover, we generalise and improve some results of Weichuan Lin, ...In this paper, we deal with the uniqueness problems on entire and meromorphic functions con- cerning differential polynomials that share fixed-points. Moreover, we generalise and improve some results of Weichuan Lin, Hongxun Yi, Meng Chao, C. Y. Fang, M. L. Fang and Junfeng xu.展开更多
In this paper we deal with the uniqueness of meromorphic functions when two nonlinear differential polynomials generated by two meromorphic functions share a small function. We consider the case for some general diffe...In this paper we deal with the uniqueness of meromorphic functions when two nonlinear differential polynomials generated by two meromorphic functions share a small function. We consider the case for some general differential polynomials [fnP(f)f,] where P(f) is a polynomial which generalize some result due to Abhijit Banerjee and Sonali Mukherjee [1].展开更多
The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (n...The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (not identically eaqual to zero) being a common small function related to f(z) and g(z), iffn(z)(f(z)-1)f'(z) and gn(z)(g(z)-1)g'(z) share a(z) ca, where CM is counting multiplicity, then g(z) ≡f(z). This is an extended version of Fang and Hong's theorem [ Fang ML, Hong W, A unicity theorem for entire functions concerning differential polynomials, Journal of Indian Pure Applied Mathematics, 2001, 32 (9): 1343-1348].展开更多
In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of t...In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of the coefficients for functions belong to the subclasses.展开更多
In this paper, we study the normality of a family of analytic functions and prove the following theorem. Let F be a family of analytic functions in a domain D , k be a positive integer and a(z) , a 1(z) , a 2(z) , ......In this paper, we study the normality of a family of analytic functions and prove the following theorem. Let F be a family of analytic functions in a domain D , k be a positive integer and a(z) , a 1(z) , a 2(z) , ... , a k(z) be analytic in D such that a(z)0 . If f(z)≠0 and the zeros of f (k) (z)+a 1(z)f (k-1) (z)+...+a k(z)f(z)-a(z) are of multiplicity at least 2 for each f∈F , then F is normal in D . This result improves Miranda s norm...展开更多
In this paper, we study the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing fixed point and obtain some results which generalize the results due to Subhas S. Bhoosnu...In this paper, we study the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing fixed point and obtain some results which generalize the results due to Subhas S. Bhoosnurmath and Veena L. Pujari [1].展开更多
With the notion of weakly weighted sharing and relaxed weighted sharing,we investigate the uniqueness problems of certain type of difference polynomials sharing a small function.The results of the paper extend and gen...With the notion of weakly weighted sharing and relaxed weighted sharing,we investigate the uniqueness problems of certain type of difference polynomials sharing a small function.The results of the paper extend and generalize some recent results due to Meng(Math.Bohem.139:89-97,2014).展开更多
文摘This article studies the problem of uniqueness of two entire or meromorphic functions whose differential polynomials share a finite set. The results extend and improve on some theorems given in [3].
文摘In this paper we have generalized some results of Rahman [1] by considering the maximum of |f(z)| over a certain lemniscate instead of considering the maximum of|f(z)|, for |z|=r and obtain the analogous results for the entire function |f(z)|=Σpk(z) [q(z)]k-1 where q(z) is a polynomial of degree m and pk(z)is of degree m-1. Moreover, we have obtained some inequalities on the lover order, type and lower type in terms of polynomial coefficients.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
文摘Two new analytical formulae expressing explicitly the derivatives of Chebyshev polynomials of the third and fourth kinds of any degree and of any order in terms of Chebyshev polynomials of the third and fourth kinds themselves are proved. Two other explicit formulae which express the third and fourth kinds Chebyshev expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of their original expansion coefficients are also given. Two new reduction formulae for summing some terminating hypergeometric functions of unit argument are deduced. As an application of how to use Chebyshev polynomials of the third and fourth kinds for solving high-order boundary value problems, two spectral Galerkin numerical solutions of a special linear twelfth-order boundary value problem are given.
文摘In this paper, we deal with the uniqueness problems on entire and meromorphic functions con- cerning differential polynomials that share fixed-points. Moreover, we generalise and improve some results of Weichuan Lin, Hongxun Yi, Meng Chao, C. Y. Fang, M. L. Fang and Junfeng xu.
文摘In this paper we deal with the uniqueness of meromorphic functions when two nonlinear differential polynomials generated by two meromorphic functions share a small function. We consider the case for some general differential polynomials [fnP(f)f,] where P(f) is a polynomial which generalize some result due to Abhijit Banerjee and Sonali Mukherjee [1].
基金Funded by The National Natural Science Foundation of China under Grant No. 10671067.
文摘The uniqueness problem of entire functions sharing one small function was studied. By Picard's Theorem, we proved that for two transcendental entire functionsf(z) and g(z), a positive integer n≥9, and a(z) (not identically eaqual to zero) being a common small function related to f(z) and g(z), iffn(z)(f(z)-1)f'(z) and gn(z)(g(z)-1)g'(z) share a(z) ca, where CM is counting multiplicity, then g(z) ≡f(z). This is an extended version of Fang and Hong's theorem [ Fang ML, Hong W, A unicity theorem for entire functions concerning differential polynomials, Journal of Indian Pure Applied Mathematics, 2001, 32 (9): 1343-1348].
文摘In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of the coefficients for functions belong to the subclasses.
文摘In this paper, we study the normality of a family of analytic functions and prove the following theorem. Let F be a family of analytic functions in a domain D , k be a positive integer and a(z) , a 1(z) , a 2(z) , ... , a k(z) be analytic in D such that a(z)0 . If f(z)≠0 and the zeros of f (k) (z)+a 1(z)f (k-1) (z)+...+a k(z)f(z)-a(z) are of multiplicity at least 2 for each f∈F , then F is normal in D . This result improves Miranda s norm...
文摘In this paper, we study the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing fixed point and obtain some results which generalize the results due to Subhas S. Bhoosnurmath and Veena L. Pujari [1].
文摘With the notion of weakly weighted sharing and relaxed weighted sharing,we investigate the uniqueness problems of certain type of difference polynomials sharing a small function.The results of the paper extend and generalize some recent results due to Meng(Math.Bohem.139:89-97,2014).