A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, struc...A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time.展开更多
Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolu...Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.展开更多
We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the gener...We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. At the same time, we have shown graphical behavior of the traveling wave solutions.展开更多
In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of t...In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of the coefficients for functions belong to the subclasses.展开更多
This work provides a new method for pricing options under the generalized stochastic volatility models with Jacobi stochastic correlation.Our method is based on the observation that the generalized models belong to th...This work provides a new method for pricing options under the generalized stochastic volatility models with Jacobi stochastic correlation.Our method is based on the observation that the generalized models belong to the class of polynomial diffusions and therefore the option prices can be efficiently computed via orthogonal polynomial expansions.We take the Heston and Schöbel-Zhu models with stochastic correlation as two specific examples and are able to derive the analytical formulas for the option prices.We also illustrate the accuracy of the proposed method through a number of numerical experiments.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a...In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.展开更多
In this paper, we present a non-linear (multi-affine) registration algorithm based on a local polynomial expansion model. We generalize previous work using a quadratic polynomial expansion model. Local affine models a...In this paper, we present a non-linear (multi-affine) registration algorithm based on a local polynomial expansion model. We generalize previous work using a quadratic polynomial expansion model. Local affine models are estimated using this generalized model analytically and iteratively, and combined to a deformable registration algorithm. Experiments show that the affine parameter calculations derived from this quadratic model are more accurate than using a linear model. Experiments further indicate that the multi-affine deformable registration method can handle complex non-linear deformation fields necessary for deformable registration, and a faster convergent rate is verified from our comparison experiment.展开更多
In this study,the polynomial expansion method(PEM)and the polynomial method of particular solutions(PMPS)are applied to solve a class of linear elliptic partial differential equations(PDEs)in two dimensions with const...In this study,the polynomial expansion method(PEM)and the polynomial method of particular solutions(PMPS)are applied to solve a class of linear elliptic partial differential equations(PDEs)in two dimensions with constant coefficients.In the solution procedure,the sought solution is approximated by the Pascal polynomials and their particular solutions for the PEM and PMPS,respectively.The multiple-scale technique is applied to improve the conditioning of the resulted linear equations and the accuracy of numerical results for both of the PEM and PMPS.Some mathematical statements are provided to demonstrate the equivalence of the PEM and PMPS bases as they are both bases of a certain polynomial vector space.Then,some numerical experiments were conducted to validate the implementation of the PEM and PMPS.Numerical results demonstrated that the PEM is more accurate and well-conditioned than the PMPS and the multiple-scale technique is essential in these polynomial methods.展开更多
One of the open problems in the field of forward uncertainty quantification(UQ)is the ability to form accurate assessments of uncertainty having only incomplete information about the distribution of random inputs.Anot...One of the open problems in the field of forward uncertainty quantification(UQ)is the ability to form accurate assessments of uncertainty having only incomplete information about the distribution of random inputs.Another challenge is to efficiently make use of limited training data for UQ predictions of complex engineering problems,particularly with high dimensional random parameters.We address these challenges by combining data-driven polynomial chaos expansions with a recently developed preconditioned sparse approximation approach for UQ problems.The first task in this two-step process is to employ the procedure developed in[1]to construct an"arbitrary"polynomial chaos expansion basis using a finite number of statistical moments of the random inputs.The second step is a novel procedure to effect sparse approximation via l1 minimization in order to quantify the forward uncertainty.To enhance the performance of the preconditioned l1 minimization problem,we sample from the so-called induced distribution,instead of using Monte Carlo(MC)sampling from the original,unknown probability measure.We demonstrate on test problems that induced sampling is a competitive and often better choice compared with sampling from asymptotically optimal measures(such as the equilibrium measure)when we have incomplete information about the distribution.We demonstrate the capacity of the proposed induced sampling algorithm via sparse representation with limited data on test functions,and on a Kirchoff plating bending problem with random Young’s modulus.展开更多
The low temperature properties of double exchange model in triangular lattice are investigated via truncated polynomial expansion method(TPEM),which reduces the computational complexity and enables parallel computatio...The low temperature properties of double exchange model in triangular lattice are investigated via truncated polynomial expansion method(TPEM),which reduces the computational complexity and enables parallel computation.We found that for the half-filling case a stable 120◦spin configuration phase occurs owing to the frustration of triangular lattice and is further stabilized by antiferromagnetic(AF)superexchange interaction,while a transition between a stable ferromagnetic(FM)phase and a unique flux phase with small finite-size effect is induced by AF superexchange interaction for the quarter-filling case.展开更多
Here proposed are certain asymptotic expansion formulas for Ln(w-1)(λz) and Cn(ω)(λz) in whichO(λ) and n = 0(λ1/2 )(λ→∞) , z being x complex number. Also presented are certain estimates for the remainders(erro...Here proposed are certain asymptotic expansion formulas for Ln(w-1)(λz) and Cn(ω)(λz) in whichO(λ) and n = 0(λ1/2 )(λ→∞) , z being x complex number. Also presented are certain estimates for the remainders(error bounds) of the asymptotic expansions within the regions D1( - ∞<Rez≤1/2 (ω/λ) and D2(1/2 (ω/λ)≤Re.'C00)? respectively.展开更多
Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is...Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is all the more important when elements composed of brittle materials are exposed to dynamic environments,resulting in catastrophic fatigue failures.The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables.Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading.Crack growth is modelled using a phase-field approach within a finite element framework.For modelling fatigue,fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function.Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties.Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method.This proposed approach can accurately predict results typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs.The independent random variables’sensitivity to the system response is determined using Sobol’indices.The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace,nuclear and biomedical engineering.The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing.展开更多
In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic ...In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic energy flow calculation methods and risk assessment theories applicable to integrated energy systems are crucial.This study proposed a probabilistic energy flow calculation method based on polynomial chaos expansion for an electric-heat-gas integrated energy system.The method accurately and efficiently calculated the over-limit probability of the system state variables,considering the coupling conditions of electricity,heat,and gas,as well as uncertainties and correlations in renewable energy unit outputs and multiple types of loads.To further evaluate and quantify the impact of uncertainty factors on the over-limit risk,a global sensitivity analysis method for the integrated energy system based on the analysis of covariance theory is proposed.This method considered the source-load correlation and aimed to identify the key uncertainty factors that influence stable operation.Simulation results demonstrated that the proposed method achieved accuracy to that of the Monte Carlo method while significantly reducing calculation time.It effectively quantified the over-limit risk under the presence of multiple source-load uncertainties.展开更多
Polynomial chaos expansions(PCEs)have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs by decomposing the output in terms of polynomials of t...Polynomial chaos expansions(PCEs)have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs by decomposing the output in terms of polynomials of the inputs.PCEs for models with independent inputs have been extensively explored in the literature.Recently,different approaches have been proposed for models with dependent inputs to expand the use of PCEs to more real-world applications.Typical approaches include building PCEs based on the Gram–Schmidt algorithm or transforming the dependent inputs into independent inputs.However,the two approaches have their limitations regarding computational efficiency and additional assumptions about the input distributions,respectively.In this paper,we propose a data-driven approach to build sparse PCEs for models with dependent inputs without any distributional assumptions.The proposed algorithm recursively constructs orthonormal polynomials using a set of monomials based on their correlations with the output.The proposed algorithm on building sparse PCEs not only reduces the number of minimally required observations but also improves the numerical stability and computational efficiency.Four numerical examples are implemented to validate the proposed algorithm.The source code is made publicly available for reproducibility.展开更多
An accurate and efficient numerical method for solving the crack-crack interaction problem is presented. The method is mainly by means of the dislocation model, stress superposition principle and Chebyshev polynomial ...An accurate and efficient numerical method for solving the crack-crack interaction problem is presented. The method is mainly by means of the dislocation model, stress superposition principle and Chebyshev polynomial expansion of the pseudo-traction. This method can be applied to compute the stress intensity factors of multiple kinked cracks and multiple rows of periodic cracks as well as the overall strains of rock masses containing multiple kinked cracks under complex loads. Many complex computational examples are given. The dependence of the crack-crack interaction on the crack configuration, the geometrical and physical parameters, and loads pattern, is investigated. By comparison with numerical results under confining pressure unloading, it is shown that the crack-crack interaction under axial-dimensional unloading is weaker than those under confining pressure unloading. Numerical results for single faults and crossed faults show that the single faults are more unstable than the crossed faults. It is found from numerical results for different crack lengths and different crack spacing that the interaction among kinked cracks decreases with an increase in length of the kinked cracks and the crack spacing under axial-dimensional unloading.展开更多
Linear precoding methods such as zero-forcing(ZF)are near optimal for downlink massive multi-user multiple input multiple output(MIMO)systems due to their asymptotic channel property.However,as the number of users inc...Linear precoding methods such as zero-forcing(ZF)are near optimal for downlink massive multi-user multiple input multiple output(MIMO)systems due to their asymptotic channel property.However,as the number of users increases,the computational complexity of obtaining the inverse matrix of the gram matrix increases.Forsolving the computational complexity problem,this paper proposes an improved Jacobi(JC)-based precoder to improve error performance of the conventional JC in the downlink massive MIMO systems.The conventional JC was studied for solving the high computational complexity of the ZF algorithm and was able to achieve parallel implementation.However,the conventional JC has poor error performance when the number of users increases,which means that the diagonal dominance component of the gram matrix is reduced.In this paper,the preconditioning method is proposed to improve the error performance.Before executing the JC,the condition number of the linear equation and spectrum radius of the iteration matrix are reduced by multiplying the preconditioning matrix of the linear equation.To further reduce the condition number of the linear equation,this paper proposes a polynomial expansion precondition matrix that supplements diagonal components.The results show that the proposed method provides better performance than other iterative methods and has similar performance to the ZF.展开更多
The key problem of securing multieast is to generate, distribute and update Session Encryption Key(SEK). Polynomial expansion with multi-seed (MPE) scheme is an approach which is based on Polynomial expansion (PE...The key problem of securing multieast is to generate, distribute and update Session Encryption Key(SEK). Polynomial expansion with multi-seed (MPE) scheme is an approach which is based on Polynomial expansion (PE) scheme and overcomes PE's shortage. Its operation is demonstrated by using multi-seed, the group member is partitioned to many subgroups. While updating the SEK, computation is needed only in one of subgroups, the other of them will use the computation history to update their SEK. The key problems to design a MPE scheme application includes to find a feasible one way function as well as to generate a Strict Prime Number (SPN). Those technologies with multi-seed and computation history concepts make MPE as a good choice in practical applications. A prototype test system is designed and solutions of all above mentioned problems are included in this proposed paper.展开更多
基金The National Natural Science Foundation of China(No.51378407,51578431)
文摘A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time.
文摘Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.
文摘We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. At the same time, we have shown graphical behavior of the traveling wave solutions.
文摘In this paper,we define new subclasses of bi-univalent functions involving a differ-ential operator in the open unit disc△={z:z∈C and|z|<1}:Moreover,we use the Faber polynomial expansion to obtain the bounds of the coefficients for functions belong to the subclasses.
文摘This work provides a new method for pricing options under the generalized stochastic volatility models with Jacobi stochastic correlation.Our method is based on the observation that the generalized models belong to the class of polynomial diffusions and therefore the option prices can be efficiently computed via orthogonal polynomial expansions.We take the Heston and Schöbel-Zhu models with stochastic correlation as two specific examples and are able to derive the analytical formulas for the option prices.We also illustrate the accuracy of the proposed method through a number of numerical experiments.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.62102444)a Major Research Project in Higher Education Institutions in Henan Province(No.23A560015).
文摘In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.
基金supported by the joint PhD Program of the China Scholarship Council(CSC)the US National Institutes of Health(NIH)(Nos.R01MH074794 and P41RR013218)the Na-tional Natural Science Foundation of China(No.60972102)
文摘In this paper, we present a non-linear (multi-affine) registration algorithm based on a local polynomial expansion model. We generalize previous work using a quadratic polynomial expansion model. Local affine models are estimated using this generalized model analytically and iteratively, and combined to a deformable registration algorithm. Experiments show that the affine parameter calculations derived from this quadratic model are more accurate than using a linear model. Experiments further indicate that the multi-affine deformable registration method can handle complex non-linear deformation fields necessary for deformable registration, and a faster convergent rate is verified from our comparison experiment.
基金The Ministry of Science and Technology of Taiwan is gratefully acknowledged for providing financial support to carry out the present work under the Grant No.MOST 109-2221-E-992-046-MY3.
文摘In this study,the polynomial expansion method(PEM)and the polynomial method of particular solutions(PMPS)are applied to solve a class of linear elliptic partial differential equations(PDEs)in two dimensions with constant coefficients.In the solution procedure,the sought solution is approximated by the Pascal polynomials and their particular solutions for the PEM and PMPS,respectively.The multiple-scale technique is applied to improve the conditioning of the resulted linear equations and the accuracy of numerical results for both of the PEM and PMPS.Some mathematical statements are provided to demonstrate the equivalence of the PEM and PMPS bases as they are both bases of a certain polynomial vector space.Then,some numerical experiments were conducted to validate the implementation of the PEM and PMPS.Numerical results demonstrated that the PEM is more accurate and well-conditioned than the PMPS and the multiple-scale technique is essential in these polynomial methods.
基金supported by the NSF of China(No.11671265)partially supported by NSF DMS-1848508+4 种基金partially supported by the NSF of China(under grant numbers 11688101,11571351,and 11731006)science challenge project(No.TZ2018001)the youth innovation promotion association(CAS)supported by the National Science Foundation under Grant No.DMS-1439786the Simons Foundation Grant No.50736。
文摘One of the open problems in the field of forward uncertainty quantification(UQ)is the ability to form accurate assessments of uncertainty having only incomplete information about the distribution of random inputs.Another challenge is to efficiently make use of limited training data for UQ predictions of complex engineering problems,particularly with high dimensional random parameters.We address these challenges by combining data-driven polynomial chaos expansions with a recently developed preconditioned sparse approximation approach for UQ problems.The first task in this two-step process is to employ the procedure developed in[1]to construct an"arbitrary"polynomial chaos expansion basis using a finite number of statistical moments of the random inputs.The second step is a novel procedure to effect sparse approximation via l1 minimization in order to quantify the forward uncertainty.To enhance the performance of the preconditioned l1 minimization problem,we sample from the so-called induced distribution,instead of using Monte Carlo(MC)sampling from the original,unknown probability measure.We demonstrate on test problems that induced sampling is a competitive and often better choice compared with sampling from asymptotically optimal measures(such as the equilibrium measure)when we have incomplete information about the distribution.We demonstrate the capacity of the proposed induced sampling algorithm via sparse representation with limited data on test functions,and on a Kirchoff plating bending problem with random Young’s modulus.
基金supported by the NFSC grants No.10425417 and No.10674142.
文摘The low temperature properties of double exchange model in triangular lattice are investigated via truncated polynomial expansion method(TPEM),which reduces the computational complexity and enables parallel computation.We found that for the half-filling case a stable 120◦spin configuration phase occurs owing to the frustration of triangular lattice and is further stabilized by antiferromagnetic(AF)superexchange interaction,while a transition between a stable ferromagnetic(FM)phase and a unique flux phase with small finite-size effect is induced by AF superexchange interaction for the quarter-filling case.
基金Supported NSFRC(canada)and also by the National Natural Science Foundation of China.
文摘Here proposed are certain asymptotic expansion formulas for Ln(w-1)(λz) and Cn(ω)(λz) in whichO(λ) and n = 0(λ1/2 )(λ→∞) , z being x complex number. Also presented are certain estimates for the remainders(error bounds) of the asymptotic expansions within the regions D1( - ∞<Rez≤1/2 (ω/λ) and D2(1/2 (ω/λ)≤Re.'C00)? respectively.
文摘Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is all the more important when elements composed of brittle materials are exposed to dynamic environments,resulting in catastrophic fatigue failures.The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables.Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading.Crack growth is modelled using a phase-field approach within a finite element framework.For modelling fatigue,fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function.Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties.Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method.This proposed approach can accurately predict results typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs.The independent random variables’sensitivity to the system response is determined using Sobol’indices.The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace,nuclear and biomedical engineering.The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing.
基金supported in part by the National Natural Science Foundation of China(No.51977005)。
文摘In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic energy flow calculation methods and risk assessment theories applicable to integrated energy systems are crucial.This study proposed a probabilistic energy flow calculation method based on polynomial chaos expansion for an electric-heat-gas integrated energy system.The method accurately and efficiently calculated the over-limit probability of the system state variables,considering the coupling conditions of electricity,heat,and gas,as well as uncertainties and correlations in renewable energy unit outputs and multiple types of loads.To further evaluate and quantify the impact of uncertainty factors on the over-limit risk,a global sensitivity analysis method for the integrated energy system based on the analysis of covariance theory is proposed.This method considered the source-load correlation and aimed to identify the key uncertainty factors that influence stable operation.Simulation results demonstrated that the proposed method achieved accuracy to that of the Monte Carlo method while significantly reducing calculation time.It effectively quantified the over-limit risk under the presence of multiple source-load uncertainties.
基金This work was supported in part by the U.S.National Science Foundation(NSF grants CMMI-1824681,DMS-1952781,and BCS-2121616).
文摘Polynomial chaos expansions(PCEs)have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs by decomposing the output in terms of polynomials of the inputs.PCEs for models with independent inputs have been extensively explored in the literature.Recently,different approaches have been proposed for models with dependent inputs to expand the use of PCEs to more real-world applications.Typical approaches include building PCEs based on the Gram–Schmidt algorithm or transforming the dependent inputs into independent inputs.However,the two approaches have their limitations regarding computational efficiency and additional assumptions about the input distributions,respectively.In this paper,we propose a data-driven approach to build sparse PCEs for models with dependent inputs without any distributional assumptions.The proposed algorithm recursively constructs orthonormal polynomials using a set of monomials based on their correlations with the output.The proposed algorithm on building sparse PCEs not only reduces the number of minimally required observations but also improves the numerical stability and computational efficiency.Four numerical examples are implemented to validate the proposed algorithm.The source code is made publicly available for reproducibility.
基金the National Natural Science Foundation of China (Nos. 50679097 and 50778184).
文摘An accurate and efficient numerical method for solving the crack-crack interaction problem is presented. The method is mainly by means of the dislocation model, stress superposition principle and Chebyshev polynomial expansion of the pseudo-traction. This method can be applied to compute the stress intensity factors of multiple kinked cracks and multiple rows of periodic cracks as well as the overall strains of rock masses containing multiple kinked cracks under complex loads. Many complex computational examples are given. The dependence of the crack-crack interaction on the crack configuration, the geometrical and physical parameters, and loads pattern, is investigated. By comparison with numerical results under confining pressure unloading, it is shown that the crack-crack interaction under axial-dimensional unloading is weaker than those under confining pressure unloading. Numerical results for single faults and crossed faults show that the single faults are more unstable than the crossed faults. It is found from numerical results for different crack lengths and different crack spacing that the interaction among kinked cracks decreases with an increase in length of the kinked cracks and the crack spacing under axial-dimensional unloading.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2019-2018-0-01423)supervised by the IITP(Institute for Information&communications Technology Promotion)+1 种基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1A6A1A03038540).
文摘Linear precoding methods such as zero-forcing(ZF)are near optimal for downlink massive multi-user multiple input multiple output(MIMO)systems due to their asymptotic channel property.However,as the number of users increases,the computational complexity of obtaining the inverse matrix of the gram matrix increases.Forsolving the computational complexity problem,this paper proposes an improved Jacobi(JC)-based precoder to improve error performance of the conventional JC in the downlink massive MIMO systems.The conventional JC was studied for solving the high computational complexity of the ZF algorithm and was able to achieve parallel implementation.However,the conventional JC has poor error performance when the number of users increases,which means that the diagonal dominance component of the gram matrix is reduced.In this paper,the preconditioning method is proposed to improve the error performance.Before executing the JC,the condition number of the linear equation and spectrum radius of the iteration matrix are reduced by multiplying the preconditioning matrix of the linear equation.To further reduce the condition number of the linear equation,this paper proposes a polynomial expansion precondition matrix that supplements diagonal components.The results show that the proposed method provides better performance than other iterative methods and has similar performance to the ZF.
基金Supported by the National Natural Science Foun-dation of China (60473072)
文摘The key problem of securing multieast is to generate, distribute and update Session Encryption Key(SEK). Polynomial expansion with multi-seed (MPE) scheme is an approach which is based on Polynomial expansion (PE) scheme and overcomes PE's shortage. Its operation is demonstrated by using multi-seed, the group member is partitioned to many subgroups. While updating the SEK, computation is needed only in one of subgroups, the other of them will use the computation history to update their SEK. The key problems to design a MPE scheme application includes to find a feasible one way function as well as to generate a Strict Prime Number (SPN). Those technologies with multi-seed and computation history concepts make MPE as a good choice in practical applications. A prototype test system is designed and solutions of all above mentioned problems are included in this proposed paper.