Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4)...Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.展开更多
Candidatus Accumulibacter,a prominent polyphosphate-accumulating organism(PAO)in wastewater treatment,plays a crucial role in enhanced biological phosphorus removal(EBPR).The genetic underpinnings of its polyphosphate...Candidatus Accumulibacter,a prominent polyphosphate-accumulating organism(PAO)in wastewater treatment,plays a crucial role in enhanced biological phosphorus removal(EBPR).The genetic underpinnings of its polyphosphate accumulation capabilities,however,remain largely unknown.Here,we conducted a comprehensive genomic analysis of Ca.Accumulibacter-PAOs and their relatives within the Rhodocyclaceae family,identifying 124 core genes acquired via horizontal gene transfer(HGT)at its least common ancestor.Metatranscriptomic analysis of an enrichment culture of Ca.Accumulibacter revealed active transcription of 44 of these genes during an EBPR cycle,notably including the polyphosphate kinase 2(PPK2)gene instead of the commonly recognized polyphosphate kinase 1(PPK1)gene.Intriguingly,the phosphate regulon(Pho)genes showed minimal transcriptions,pointing to a distinctive fact of Pho dysregulation,where PhoU,the phosphate signaling complex protein,was not regulating the high-affinity phosphate transport(Pst)system,resulting in continuous phosphate uptake.To prevent phosphate toxicity,Ca.Accumulibacter utilized the laterally acquired PPK2 to condense phosphate into polyphosphate,resulting in the polyphosphate-accumulating feature.This study provides novel insights into the evolutionary emergence of the polyphosphate-accumulating trait in Ca.Accumulibacter,offering potential advancements in understanding the PAO phenotype in the EBPR process.展开更多
基金This work was supported by grants from the National Natural Science Foundation of China(No.30370142)the.National Special Key Project on Functional Genomics and Biochip of China(No.2002AA2Z1002)the Project sponsored by the Scientific Research Foundation for the Returned Oversea Chinese Scholars,State Education Ministry.
文摘Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.
基金supported by the National Natural Science Foundation of China(52270035 and 51808297)the Natural Science Foundation of Guangdong Province(2021A1515010494)+1 种基金the Guangzhou Key Research and Development Program(2023B03J1334)the Pearl River Talent Recruitment Program(2019QN01L125).
文摘Candidatus Accumulibacter,a prominent polyphosphate-accumulating organism(PAO)in wastewater treatment,plays a crucial role in enhanced biological phosphorus removal(EBPR).The genetic underpinnings of its polyphosphate accumulation capabilities,however,remain largely unknown.Here,we conducted a comprehensive genomic analysis of Ca.Accumulibacter-PAOs and their relatives within the Rhodocyclaceae family,identifying 124 core genes acquired via horizontal gene transfer(HGT)at its least common ancestor.Metatranscriptomic analysis of an enrichment culture of Ca.Accumulibacter revealed active transcription of 44 of these genes during an EBPR cycle,notably including the polyphosphate kinase 2(PPK2)gene instead of the commonly recognized polyphosphate kinase 1(PPK1)gene.Intriguingly,the phosphate regulon(Pho)genes showed minimal transcriptions,pointing to a distinctive fact of Pho dysregulation,where PhoU,the phosphate signaling complex protein,was not regulating the high-affinity phosphate transport(Pst)system,resulting in continuous phosphate uptake.To prevent phosphate toxicity,Ca.Accumulibacter utilized the laterally acquired PPK2 to condense phosphate into polyphosphate,resulting in the polyphosphate-accumulating feature.This study provides novel insights into the evolutionary emergence of the polyphosphate-accumulating trait in Ca.Accumulibacter,offering potential advancements in understanding the PAO phenotype in the EBPR process.