期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experiment and simulation of foaming injection molding of polypropylene/nano-calcium carbonate composites by supercritical carbon dioxide 被引量:5
1
作者 Zhenhao Xi Jie Chen +2 位作者 Tao Liu Ling Zhao Lih-Sheng Turng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期180-189,共10页
Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blo... Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blowing agent. The influences of filler content and operating conditions on microstructure morphology of i PP and i PP/nano-CaCO_3 microcellular samples were studied systematically. The results showed the bubble size of the microcellular samples could be effectively decreased while the cell density increased for i PP/nano-CaCO_3 composites, especially at high CO_2 concentration and back pressure, low mold temperature and injection speed, and high filler content. Then Moldex 3D was applied to simulate the microcellular injection molding process, with the application of the measured ScCO_2 solubility and diffusion data for i PP and i PP/nano-Ca CO_3 composites respectively. For neat i PP, the simulated bubble size and density distribution in the center section of tensile bars showed a good agreement with the experimental values. However, for i PP/nano-CaCO_3 composites, the correction factor for nucleation activation energy F and the pre-exponential factor of nucleation rate f_0 were obtained by nonlinear regression on the experimental bubble size and density distribution. The parameters F and f_0 can be used to predict the microcellular injection molding process for i PP/nano-CaCO_3 composites by Moldex 3D. 展开更多
关键词 Microcellular injection molding Isotactic polypropylene/nano-calcium carbonate Cell morphology Nucleation activation energy Numerical simulation
下载PDF
Preparation, Antibacterial and Antistatic Properties of PP/Ag-Ms/CB Composites 被引量:1
2
作者 杨明 李建 XIE Wenfeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期749-757,共9页
Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the ant... Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the antibacterial and antistatic PP/Ag-Ms/CB composites were prepared by melt blending. The results showed that when the content was 0.8 wt%, Ag-Ms could be uniformly dispersed in the PP matrix and the mechanical properties of the composites remained stable. And the reduction percentages of Staphylococcus aureus and Escherichia coli were more than 80% which showed the good antibacterial behavior. In addition, conductive carbon black had reinforcing and toughening effects on the mechanical properties of PP/Ag-Ms/CB composites. When the content of CB was beyond 30 wt%, the surface resistance of the composite was reduced to less than 108 Ω which showed a remarkable antistatic property. According to the different filling content of conductive carbon black, it can flexibly regulate the resistivity of PP, and the conductive effect is durable and stable. We thus can produce permanent antistatic materials. 展开更多
关键词 antibacterial antistatic polypropylene conductive carbon black surface resistivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部