Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is ...Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is indicated that the antistatic ability of the fibers filled with composite antistatic agents that contain CNTs and organic antistatic agents was superior to that of the fibers filled either with pure organic antistatic agents or pure CNTs. The antistatic ability of the composite antistatic agent fabricated by an in situ process was superior to that of the composite antistatic agent fabricated by direct dispersing CNTs in the antistatic agent carrier. Moreover, the heat-treated CNTs could further enhance the antistatic effect compared with the initial CNTs. The antistatic effect is significantly influenced by the content of CNTs in the composite antistatic agent.展开更多
Polypropylene (PP)/multi-walled carbon nanotube (MWCNT)/calcium carbonate (CaCO(3)) composites are prepared by melt mixing using two types of CaCO(3) of different sizes. The electrical resistivities of the composites ...Polypropylene (PP)/multi-walled carbon nanotube (MWCNT)/calcium carbonate (CaCO(3)) composites are prepared by melt mixing using two types of CaCO(3) of different sizes. The electrical resistivities of the composites with the two types of CaCO(3) are all lower than those of the corresponding PP/MWCNT composites at various MWCNT loadings (1 wt%-5 wt%). The morphology of the composites is investigated by field emission scanning electron microscopy (FESEM). The crystallization behavior of PP in the composites is characterized by differential scanning calorimetry (DSC). The storage modulus, as measured by dynamic mechanical analysis (DMA), increases significantly by the presence of CaCO(3).展开更多
This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solution...This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment(HT)at 200℃for 1.5 and 3 h,resulting in the in-situ synthesis of CaCO_(3)crystals inside the heat-treated wood.The filling effect was best at the concentration of 1.2 mol/L.CaCO_(3)was uniformly distributed in the cell cavities of the heat-treated wood,and some of the crystals were embedded in the fissures of the wood cell walls.The morphology of CaCO_(3)crystals was mainly spherical and rhombic polyhedral.Three main types of CaCO_(3)crystals were calcite,vaterite,and aragonite.The HT of poplar wood at 200℃resulted in degrading the chemical components of the wood cell wall.This degradation led to reduced wood mechanical properties,including the surface hardness(HD),modulus of rupture(MOR),and modulus of elasticity(MOE).After CaCO_(3)was in-situ synthesized in the heat-treated wood,the HD increased by 18.36%and 16.35%,and MOR increased by 14.64%and 8.89%,respectively.Because of the CaCO_(3)synthesization,the char residue of the 200℃heat-treated wood samples increased by 9.31%and the maximum weight loss rate decreased by 19.80%,indicating that the filling with CaCO_(3)cannot only improve the mechanical properties of the heat-treated wood but also effectively enhance its thermal stability.展开更多
Hard carbon(HC)is considered a promising anode material for sodium-ion batteries due to its relatively low price and high specific capacity.However,HC still suffers from unclear reaction mechanisms and unsatisfactory ...Hard carbon(HC)is considered a promising anode material for sodium-ion batteries due to its relatively low price and high specific capacity.However,HC still suffers from unclear reaction mechanisms and unsatisfactory cycling stability.The study of mechano-electrochemical coupling behavior by in-situ measurement techniques is expected to understand the sodium storage and degradation mechanisms.In this paper,the strain and stress evolution of HC anodes at different sodiation/desodiation depths and cycles are investigated by combining electrochemical methods,digital image correlation,and theoretical equations.The observation by monitoring the in-situ strain evolution during the redox process supports the“adsorption-intercalation/filling”mechanism in reduction and the“de-filling/de-intercalation-deso rption”mechanism in oxidation.Further studies have demonstrated that the strain and stress of the electrode show periodic changes accompanied by a continuous accumulation of residual stress during cycles,explaining the capacity degradation mechanism of HC from a mechanical perspective.In addition,when the higher current density is applied,the electrodes experience greater strain and stress associated with the Na+insertion rate.This work clarifies the Na-storage mechanism and the mechano-electrochemical coupling mechanism of HC anodes by in-situ strain measurement,which helps optimize and design the anode materials of sodium-ion batteries from the perspective of interface microstructure and multi-field coupling,such as in situ integrated interface structure design.展开更多
To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare ...To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.展开更多
A binder-free Ir-dispersed ordered mesoporous carbon(Ir-OMC) catalytic electrode has been prepared through a designed in-situ carbonization method, which involves coating resorcinol and formaldehyde mixtures with ir...A binder-free Ir-dispersed ordered mesoporous carbon(Ir-OMC) catalytic electrode has been prepared through a designed in-situ carbonization method, which involves coating resorcinol and formaldehyde mixtures with iridium precursors onto the three-dimensional nickel foam framework, followed by insitu calcination in Natmosphere at 800 ℃ for 3 h. This electrode shows a large surface area, ordered mesoporous structure and homogeneous distribution of metal nanoparticles. It presents good activity and stability towards hydrogen evolution reaction, which is attributed to the efficient mass and electron transport from the intimate contact among Ir nanoparticles, ordered mesoporous carbon matrix and 3 D conductive substrate. We hope that this in-situ carbonization synthetic route can also be applied to design more high-performance catalysts for water splitting, fuel cells and other clean energy devices.展开更多
Impregnation of isotactic polypropylene (iPP) with nucleating agent (NA21) using supercritical carbon dioxide as the swelling agent at different temperature and pressure and its non-isothermal crystallization kinetics...Impregnation of isotactic polypropylene (iPP) with nucleating agent (NA21) using supercritical carbon dioxide as the swelling agent at different temperature and pressure and its non-isothermal crystallization kinetics were investigated. The results showed that NA21 was dispersed at a nanometer-scale in the PP matrix, resulting in the formation of different typesof crystal phases of iPP and the enhancement of its mechanical properties.展开更多
Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blo...Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blowing agent. The influences of filler content and operating conditions on microstructure morphology of i PP and i PP/nano-CaCO_3 microcellular samples were studied systematically. The results showed the bubble size of the microcellular samples could be effectively decreased while the cell density increased for i PP/nano-CaCO_3 composites, especially at high CO_2 concentration and back pressure, low mold temperature and injection speed, and high filler content. Then Moldex 3D was applied to simulate the microcellular injection molding process, with the application of the measured ScCO_2 solubility and diffusion data for i PP and i PP/nano-Ca CO_3 composites respectively. For neat i PP, the simulated bubble size and density distribution in the center section of tensile bars showed a good agreement with the experimental values. However, for i PP/nano-CaCO_3 composites, the correction factor for nucleation activation energy F and the pre-exponential factor of nucleation rate f_0 were obtained by nonlinear regression on the experimental bubble size and density distribution. The parameters F and f_0 can be used to predict the microcellular injection molding process for i PP/nano-CaCO_3 composites by Moldex 3D.展开更多
The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon diox...The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.展开更多
Recycled polypropylene filaments for fused filament fabrication were investigated with and without 14 wt% short fibre carbon reinforcements. The microstructure and mechanical properties of the filaments and 3D printed...Recycled polypropylene filaments for fused filament fabrication were investigated with and without 14 wt% short fibre carbon reinforcements. The microstructure and mechanical properties of the filaments and 3D printed specimens were characterized using scanning electron microscopy and standard tensile testing. It was observed that recycled polypropylene filaments with 14 wt% short carbon fibre reinforcement contained pores that were dispersed throughout the microstructure of the filament. A two-stage filament extrusion process was observed to improve the spatial distribution of carbon fibre reinforcement but did not reduce the pores. Recycled polypropylene filaments without reinforcement extruded at high screw speeds above 20 rpm contained a centreline cavity but no spatially distributed pores. However, this cavity is eliminated when extrusion is carried out at screw speeds below 20 rpm. For 3D printed specimens, interlayer cavities were observed larger for specimens printed from 14 wt% carbon fibre reinforced recycled polypropylene than those printed from unreinforced filaments. The values of tensile strength for the filaments were 21.82</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 24.22</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, which reduced to 19.72</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 22.70</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, respectively, for 3D printed samples using the filaments. Likewise, the young’s modulus of the filaments was 1208.6</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 1412.7</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, which reduced to 961.5</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 1352.3</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, respectively, for the 3D printed samples. The percentage elongation at failure for the recycled polypropylene filament was 9.83% but reduced to 3.84% for the samples printed with 14 wt% carbon fiber reinforced polypropylene filaments whose elongation to failure was 6.58%. The SEM observations on the fractured tensile test samples showed interlayer gaps between the printed and the adjacent raster layers. These gaps accounted for the reduction in the mechanical properties of the printed parts.展开更多
Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT was...Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed tha...Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.展开更多
With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges o...With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.展开更多
Colloidal synthesis method such as oleylamine(OAm)-stabilized process is of great interest for obtaining uniform and highly dispersed platinum nanoparticle catalysts, yet the ligand may unavoidably inhibit their elect...Colloidal synthesis method such as oleylamine(OAm)-stabilized process is of great interest for obtaining uniform and highly dispersed platinum nanoparticle catalysts, yet the ligand may unavoidably inhibit their electro-catalytic performance. Thus, fully removing these ligands is critical to activate catalyst surface. Previous research of OAm removal process pointed that thermal annealing was the most effective way in comparison with other methods such as chemical washing, UV–Ozone irradiation and cyclic voltammetry sweeping, but generally resulting in undesired growth of platinum nanoparticle. Few studies concerning a more efficient ligand removal process have been published yet. In this work we proposed a platinum in-situ catalytic OAm combustion strategy to elucidate the removal mechanism of OAm ligands in thermal process and the key experimental parameters were also optimized. In addition, heat flow signal based on differential scanning calorimetry(DSC) measurement as a sensitive indicator, is suggested to reveal the ligand removal efficiency, which is much more reliable than the traditional spectroscopy.In comparison with commercial Pt/C sample, such a surface clean Pt/C electrocatalyst has shown an enhanced specific activity for oxygen reduction reaction. Our removal strategy and the evaluation method are highly instructive to efficient removal of different organic ligands.展开更多
Three kinds of Al2O3- Si- C matrix specimens were prepared using tabular corundum powder and Si powder as starting materials,ultrafine flake graphite,nano carbon black,and carbon nanotubes as carbon sources,respective...Three kinds of Al2O3- Si- C matrix specimens were prepared using tabular corundum powder and Si powder as starting materials,ultrafine flake graphite,nano carbon black,and carbon nanotubes as carbon sources,respectively,to research the effect of micro or nano carbon materials on structure and morphology of formed Si C crystals. The specimens were fired at 1 000,1 200 and 1 400℃ for 3 h in carbon-embedded condition,respectively.The phase composition was studied by XRD and the crystal morphology of Si C was investigated by FESEM. The results show that:( 1) the amount of Si C increases with the firing temperature rising;( 2) the in-situ reaction mechanism and the formed Si C crystal morphology vary with carbon source: carbon nanotubes are generally converted into Si C whiskers by carbon nanotubes-confined reaction; Si and nano carbon black react to nucleate quickly,and the nucleated Si C crystals grow evenly in all directions forming Si C particles; Si C whiskers are produced from edge to internal of ultrafine flake graphite.展开更多
Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g....Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g.,HKUST-1)have been developed but the question remains how to deploy them for gas-solid contact.Unfortunately,the direct use of MOFs as nanocrystals would lead to serious problems and risks.Here,for the first time,we report a novel MOF-based hybrid sorbent that is produced via an innovative in-situ microencapsulated synthesis.Using a custom-made double capillary microfluidic assembly,double emulsions of the MOF precursor solutions and UV-curable silicone shell fluid are produced.Subsequently,HKUST-1 MOF is successfully synthesized within the droplets enclosed in the gas permeable microcapsules.The developed MOF-bearing microcapsules uniquely allow the deployment of functional nanocrystals without the challenge of handling ultrafine particles,and further,can selectively reject undesired compounds to protect encapsulated MOFs.展开更多
Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O c...Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O co-doped carbon anchored with Co nanoparticles(Co-SFB)synthesized by employing the organic ligands with the target heteroatoms.Raman,electron paramagnetic resonance(EPR),electrochemical impedance spectroscopy(EIS),and X-ray photoelectron spectroscopy(XPS)characterizations showed that the co-doping of N and O heteroatoms in the carbon support endows Co-SFB with enriched lone pair electrons,fast electron transfer ability,and strong metal-support interaction.These electronic properties resulted in strong FF adsorption as well as lower apparent reaction activation energy.At last,the obtained N,O co-doped Co/C catalyst showed excellent catalytic activity(nearly 100 mol%FF conversion and 94.6 mol%MF yield)and stability for in-situ dehydrogenation of FF into MF.This N,O co-doping strategy for the synthesis of highly efficient catalytic materials with controllable electronic state will provide an excellent opportunity to better understand the structure-function relationship.展开更多
Electrical double-layer capacitors(EDLCs)consist of energy storage devices that present high-power and moderate energy density.The electrolyte and electrode physicochemical properties are crucial for improving their o...Electrical double-layer capacitors(EDLCs)consist of energy storage devices that present high-power and moderate energy density.The electrolyte and electrode physicochemical properties are crucial for improving their overall energy storage capabilities.Therefore,the stability of the EDLCs’materials is the primary focus of this study.Since energy storage depends on the specific capacitance,and also on the square of the maximum capacitive cell voltage(UMCV).Thus,electrodes with high specific surface area(SSA)and electrolytes with excellent electrochemical stability are commonly reported in the literature.Aqueous electrolytes are safer and green devices compared to other organic-based solutions.On the other hand,their UMCVis reduced compared to other electrolytes(e.g.,organic-based and ionic liquids).In this sense,spanning the UMCVfor aqueous-based electrolytes is a’hot topic’research.Unfortunately,the lack of protocols to establish reliable UMCVvalues has culminated in the publishing of several conflicting results.Herein,we confirm that multiwalled carbon nanotubes(MWCNTs)housed in cells degrade and produce CO_(2) under abusive polarisation conditions.It is probed by employing electrochemical techniques,in-situ FTIR and in-situ Raman spectroscopies.From these considerations,the current study uses spectro-electrochemical techniques to support the correct determination of the electrode and electrolyte stability conditions as a function of the operating electrochemical parameters.展开更多
基金This work was financially supported by the Major State Basic Research Development Program of China (No.10332020)
文摘Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is indicated that the antistatic ability of the fibers filled with composite antistatic agents that contain CNTs and organic antistatic agents was superior to that of the fibers filled either with pure organic antistatic agents or pure CNTs. The antistatic ability of the composite antistatic agent fabricated by an in situ process was superior to that of the composite antistatic agent fabricated by direct dispersing CNTs in the antistatic agent carrier. Moreover, the heat-treated CNTs could further enhance the antistatic effect compared with the initial CNTs. The antistatic effect is significantly influenced by the content of CNTs in the composite antistatic agent.
文摘Polypropylene (PP)/multi-walled carbon nanotube (MWCNT)/calcium carbonate (CaCO(3)) composites are prepared by melt mixing using two types of CaCO(3) of different sizes. The electrical resistivities of the composites with the two types of CaCO(3) are all lower than those of the corresponding PP/MWCNT composites at various MWCNT loadings (1 wt%-5 wt%). The morphology of the composites is investigated by field emission scanning electron microscopy (FESEM). The crystallization behavior of PP in the composites is characterized by differential scanning calorimetry (DSC). The storage modulus, as measured by dynamic mechanical analysis (DMA), increases significantly by the presence of CaCO(3).
基金funded by“Natural Science Foundation of Anhui Province,Grant No.2008085QC130”.
文摘This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment(HT)at 200℃for 1.5 and 3 h,resulting in the in-situ synthesis of CaCO_(3)crystals inside the heat-treated wood.The filling effect was best at the concentration of 1.2 mol/L.CaCO_(3)was uniformly distributed in the cell cavities of the heat-treated wood,and some of the crystals were embedded in the fissures of the wood cell walls.The morphology of CaCO_(3)crystals was mainly spherical and rhombic polyhedral.Three main types of CaCO_(3)crystals were calcite,vaterite,and aragonite.The HT of poplar wood at 200℃resulted in degrading the chemical components of the wood cell wall.This degradation led to reduced wood mechanical properties,including the surface hardness(HD),modulus of rupture(MOR),and modulus of elasticity(MOE).After CaCO_(3)was in-situ synthesized in the heat-treated wood,the HD increased by 18.36%and 16.35%,and MOR increased by 14.64%and 8.89%,respectively.Because of the CaCO_(3)synthesization,the char residue of the 200℃heat-treated wood samples increased by 9.31%and the maximum weight loss rate decreased by 19.80%,indicating that the filling with CaCO_(3)cannot only improve the mechanical properties of the heat-treated wood but also effectively enhance its thermal stability.
基金supported by the National Natural Science Foundation of China(Grant No.11902283)the Natural Science Foundation of Hunan Province(Grant No.2019JJ50578)+1 种基金the Scientific Research Foundation of Hunan Provincial Education Department(Grant No.21B0126)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1078)。
文摘Hard carbon(HC)is considered a promising anode material for sodium-ion batteries due to its relatively low price and high specific capacity.However,HC still suffers from unclear reaction mechanisms and unsatisfactory cycling stability.The study of mechano-electrochemical coupling behavior by in-situ measurement techniques is expected to understand the sodium storage and degradation mechanisms.In this paper,the strain and stress evolution of HC anodes at different sodiation/desodiation depths and cycles are investigated by combining electrochemical methods,digital image correlation,and theoretical equations.The observation by monitoring the in-situ strain evolution during the redox process supports the“adsorption-intercalation/filling”mechanism in reduction and the“de-filling/de-intercalation-deso rption”mechanism in oxidation.Further studies have demonstrated that the strain and stress of the electrode show periodic changes accompanied by a continuous accumulation of residual stress during cycles,explaining the capacity degradation mechanism of HC from a mechanical perspective.In addition,when the higher current density is applied,the electrodes experience greater strain and stress associated with the Na+insertion rate.This work clarifies the Na-storage mechanism and the mechano-electrochemical coupling mechanism of HC anodes by in-situ strain measurement,which helps optimize and design the anode materials of sodium-ion batteries from the perspective of interface microstructure and multi-field coupling,such as in situ integrated interface structure design.
基金Funded by the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0912)。
文摘To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.
基金support of the National Natural Science Foundation of China (21403218, 21476226, 21403029)Ministry of Science and Technology of the People’s Republic of China under contact of 2016YFA0202800+2 种基金the Youth Innovation Promotion Association of the CASthe Scientific Research Project of the Education Department of Liaoning Province (L2014022)the Fundamental Research Funds for the Central Universities (DUT15ZD225)
文摘A binder-free Ir-dispersed ordered mesoporous carbon(Ir-OMC) catalytic electrode has been prepared through a designed in-situ carbonization method, which involves coating resorcinol and formaldehyde mixtures with iridium precursors onto the three-dimensional nickel foam framework, followed by insitu calcination in Natmosphere at 800 ℃ for 3 h. This electrode shows a large surface area, ordered mesoporous structure and homogeneous distribution of metal nanoparticles. It presents good activity and stability towards hydrogen evolution reaction, which is attributed to the efficient mass and electron transport from the intimate contact among Ir nanoparticles, ordered mesoporous carbon matrix and 3 D conductive substrate. We hope that this in-situ carbonization synthetic route can also be applied to design more high-performance catalysts for water splitting, fuel cells and other clean energy devices.
基金an International Cooperation Research Program,key project from National Science Foundation of China for multiscale methodology,SINOPEC supported fundamental research project,an Association Franco-Chinoise pour la Recherche Scientifique et Technique(AFCRST) supported project
文摘Impregnation of isotactic polypropylene (iPP) with nucleating agent (NA21) using supercritical carbon dioxide as the swelling agent at different temperature and pressure and its non-isothermal crystallization kinetics were investigated. The results showed that NA21 was dispersed at a nanometer-scale in the PP matrix, resulting in the formation of different typesof crystal phases of iPP and the enhancement of its mechanical properties.
基金Supported by the National High Technology Research and Development Program of China(2012AA040211)the National Natural Science Foundation of China(21306043)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China(2012007412001920130074110013)the Fundamental Research Funds for the Central Universities
文摘Microcellular injection molding of neat isotactic polypropylene(iPP) and isotactic polypropylene/nano-calcium carbonate composites(i PP/nano-CaCO_3) was performed using supercritical carbon dioxide as the physical blowing agent. The influences of filler content and operating conditions on microstructure morphology of i PP and i PP/nano-CaCO_3 microcellular samples were studied systematically. The results showed the bubble size of the microcellular samples could be effectively decreased while the cell density increased for i PP/nano-CaCO_3 composites, especially at high CO_2 concentration and back pressure, low mold temperature and injection speed, and high filler content. Then Moldex 3D was applied to simulate the microcellular injection molding process, with the application of the measured ScCO_2 solubility and diffusion data for i PP and i PP/nano-Ca CO_3 composites respectively. For neat i PP, the simulated bubble size and density distribution in the center section of tensile bars showed a good agreement with the experimental values. However, for i PP/nano-CaCO_3 composites, the correction factor for nucleation activation energy F and the pre-exponential factor of nucleation rate f_0 were obtained by nonlinear regression on the experimental bubble size and density distribution. The parameters F and f_0 can be used to predict the microcellular injection molding process for i PP/nano-CaCO_3 composites by Moldex 3D.
基金supported by the National Natural Science Foundation of China (Nos.U22B6004,51974341)State Key Laboratory of Deep Oil and Gas (No.SKLDOG2024-ZYTS-14)the Fundamental Research Funds for the Central Universities (No.20CX06070A)。
文摘The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.
文摘Recycled polypropylene filaments for fused filament fabrication were investigated with and without 14 wt% short fibre carbon reinforcements. The microstructure and mechanical properties of the filaments and 3D printed specimens were characterized using scanning electron microscopy and standard tensile testing. It was observed that recycled polypropylene filaments with 14 wt% short carbon fibre reinforcement contained pores that were dispersed throughout the microstructure of the filament. A two-stage filament extrusion process was observed to improve the spatial distribution of carbon fibre reinforcement but did not reduce the pores. Recycled polypropylene filaments without reinforcement extruded at high screw speeds above 20 rpm contained a centreline cavity but no spatially distributed pores. However, this cavity is eliminated when extrusion is carried out at screw speeds below 20 rpm. For 3D printed specimens, interlayer cavities were observed larger for specimens printed from 14 wt% carbon fibre reinforced recycled polypropylene than those printed from unreinforced filaments. The values of tensile strength for the filaments were 21.82</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 24.22</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, which reduced to 19.72</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 22.70</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, respectively, for 3D printed samples using the filaments. Likewise, the young’s modulus of the filaments was 1208.6</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 1412.7</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, which reduced to 961.5</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 1352.3</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, respectively, for the 3D printed samples. The percentage elongation at failure for the recycled polypropylene filament was 9.83% but reduced to 3.84% for the samples printed with 14 wt% carbon fiber reinforced polypropylene filaments whose elongation to failure was 6.58%. The SEM observations on the fractured tensile test samples showed interlayer gaps between the printed and the adjacent raster layers. These gaps accounted for the reduction in the mechanical properties of the printed parts.
文摘Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
基金Projects(51071107,51001080,51201056)supported by the National Natural Science Foundation of ChinaProject(2010CB934703)supported by the National Basic Research Program of China+1 种基金Project(13211027)supported by Science and Technology Plan Project of Hebei Province,ChinaProject(2011008)supported by Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology,China
文摘Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.
基金the National Natural Science Foundation of China(21975154)the Shanghai Municipal Education Commission(Innovation Program(2019-01-07-00-09E00021)+2 种基金Innovative Research Team of High-level Local Universities in Shanghaisupported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher LearningShanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power。
文摘With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.
基金the financial support by DICP Grant no.ZZBS201705。
文摘Colloidal synthesis method such as oleylamine(OAm)-stabilized process is of great interest for obtaining uniform and highly dispersed platinum nanoparticle catalysts, yet the ligand may unavoidably inhibit their electro-catalytic performance. Thus, fully removing these ligands is critical to activate catalyst surface. Previous research of OAm removal process pointed that thermal annealing was the most effective way in comparison with other methods such as chemical washing, UV–Ozone irradiation and cyclic voltammetry sweeping, but generally resulting in undesired growth of platinum nanoparticle. Few studies concerning a more efficient ligand removal process have been published yet. In this work we proposed a platinum in-situ catalytic OAm combustion strategy to elucidate the removal mechanism of OAm ligands in thermal process and the key experimental parameters were also optimized. In addition, heat flow signal based on differential scanning calorimetry(DSC) measurement as a sensitive indicator, is suggested to reveal the ligand removal efficiency, which is much more reliable than the traditional spectroscopy.In comparison with commercial Pt/C sample, such a surface clean Pt/C electrocatalyst has shown an enhanced specific activity for oxygen reduction reaction. Our removal strategy and the evaluation method are highly instructive to efficient removal of different organic ligands.
基金financially supported by National Basic Research Program of China ( 973 Program , 2012CB722702 )
文摘Three kinds of Al2O3- Si- C matrix specimens were prepared using tabular corundum powder and Si powder as starting materials,ultrafine flake graphite,nano carbon black,and carbon nanotubes as carbon sources,respectively,to research the effect of micro or nano carbon materials on structure and morphology of formed Si C crystals. The specimens were fired at 1 000,1 200 and 1 400℃ for 3 h in carbon-embedded condition,respectively.The phase composition was studied by XRD and the crystal morphology of Si C was investigated by FESEM. The results show that:( 1) the amount of Si C increases with the firing temperature rising;( 2) the in-situ reaction mechanism and the formed Si C crystal morphology vary with carbon source: carbon nanotubes are generally converted into Si C whiskers by carbon nanotubes-confined reaction; Si and nano carbon black react to nucleate quickly,and the nucleated Si C crystals grow evenly in all directions forming Si C particles; Si C whiskers are produced from edge to internal of ultrafine flake graphite.
基金National Science Foundation (CBET 1927336)Saudi Aramco,and the Lenfest Center for Sustainable Energy at the Earth Institute at Columbia University for financially supporting this work+3 种基金performed at GeoSoilEnviroCARS (The University of Chicago,Sector 13)Advanced Photon Source (APS),Argonne National Laboratory.GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1634415)the Department of Energy-GeoSciences (DE-FG02-94ER14466)the Advanced Photon Source,a U.S.Department of Energy (DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘Metal-Organic Frameworks(MOFs)have been developed as solid sorbents for CO_(2) capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units.A number of MOFs(e.g.,HKUST-1)have been developed but the question remains how to deploy them for gas-solid contact.Unfortunately,the direct use of MOFs as nanocrystals would lead to serious problems and risks.Here,for the first time,we report a novel MOF-based hybrid sorbent that is produced via an innovative in-situ microencapsulated synthesis.Using a custom-made double capillary microfluidic assembly,double emulsions of the MOF precursor solutions and UV-curable silicone shell fluid are produced.Subsequently,HKUST-1 MOF is successfully synthesized within the droplets enclosed in the gas permeable microcapsules.The developed MOF-bearing microcapsules uniquely allow the deployment of functional nanocrystals without the challenge of handling ultrafine particles,and further,can selectively reject undesired compounds to protect encapsulated MOFs.
基金supported by the National Key R&D Program of China(2021YFC2103704)the National Natural Science Foundation of China(22022812,21978259)+1 种基金Key R&D Program of Zhejiang(2022C01208)Institute of Zhejiang University-Quzhou S&T Planed Projects(IZQ2021KJ1001)。
文摘Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O co-doped carbon anchored with Co nanoparticles(Co-SFB)synthesized by employing the organic ligands with the target heteroatoms.Raman,electron paramagnetic resonance(EPR),electrochemical impedance spectroscopy(EIS),and X-ray photoelectron spectroscopy(XPS)characterizations showed that the co-doping of N and O heteroatoms in the carbon support endows Co-SFB with enriched lone pair electrons,fast electron transfer ability,and strong metal-support interaction.These electronic properties resulted in strong FF adsorption as well as lower apparent reaction activation energy.At last,the obtained N,O co-doped Co/C catalyst showed excellent catalytic activity(nearly 100 mol%FF conversion and 94.6 mol%MF yield)and stability for in-situ dehydrogenation of FF into MF.This N,O co-doping strategy for the synthesis of highly efficient catalytic materials with controllable electronic state will provide an excellent opportunity to better understand the structure-function relationship.
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)FAEPEX(2426/17)+7 种基金FAPESP(2020/04431-0,2020/04281-8,2016/25082-8,2017/11986-5,2017/11958-1,2014/02163-7,2018/20756-6,2018/02713-8)CAPES(1740195)the financial support from CNPq(Processes 131234/2020-0 and 130741/2021-3)the Fundação ao AmparoàPesquisa do Estado de Minas Gerais(FAPEMIGCNPq for the PQ-2 grant(Process 310544/20190)the support of Shell,the strategic importance of the support given by Brazil’s National Oil,Natural Gas,and Biofuels Agency(ANP)through the R&D levy regulationthe Center for Innovation on New Energies(CINE)the LNLS/CNPEM。
文摘Electrical double-layer capacitors(EDLCs)consist of energy storage devices that present high-power and moderate energy density.The electrolyte and electrode physicochemical properties are crucial for improving their overall energy storage capabilities.Therefore,the stability of the EDLCs’materials is the primary focus of this study.Since energy storage depends on the specific capacitance,and also on the square of the maximum capacitive cell voltage(UMCV).Thus,electrodes with high specific surface area(SSA)and electrolytes with excellent electrochemical stability are commonly reported in the literature.Aqueous electrolytes are safer and green devices compared to other organic-based solutions.On the other hand,their UMCVis reduced compared to other electrolytes(e.g.,organic-based and ionic liquids).In this sense,spanning the UMCVfor aqueous-based electrolytes is a’hot topic’research.Unfortunately,the lack of protocols to establish reliable UMCVvalues has culminated in the publishing of several conflicting results.Herein,we confirm that multiwalled carbon nanotubes(MWCNTs)housed in cells degrade and produce CO_(2) under abusive polarisation conditions.It is probed by employing electrochemical techniques,in-situ FTIR and in-situ Raman spectroscopies.From these considerations,the current study uses spectro-electrochemical techniques to support the correct determination of the electrode and electrolyte stability conditions as a function of the operating electrochemical parameters.