We produced Wood-Polymer Composites (WPCs) with phenolic resin (PR) filled with saw dust (SD) and rice husks (RH) in a PR:fillerratio of 60:40 wt.%. RH and SD were grinded and sieved into particles μm. The aim of thi...We produced Wood-Polymer Composites (WPCs) with phenolic resin (PR) filled with saw dust (SD) and rice husks (RH) in a PR:fillerratio of 60:40 wt.%. RH and SD were grinded and sieved into particles μm. The aim of this research work was to evaluate sawdust and rice husks as fillers for sustainable phenolic resin based WPCs. Therefore, we investigated the thermal stability of PR/RH and PR/SD WPCs then we studied and compared the tensile, flexural properties of PR/SD and PR/RH WPCs samples, as well as their dimensional stability after water absorption test. Furthermore, through ultraviolet light exposure, we evaluated the effects of photo-oxidation on the water stability and mechanical properties of PR/RH and PR/SD WPCs samples compared to unexposed ones. PR filled with SD presented better mechanical properties compared to PR/RH WPCs samples. However, PR/RH WPCs showed good mechanical properties, and better thermal resistance and better water repulsion capabilities compared to PR/SD WPCs samples. Although, long time UV exposure ended up lowering considerably the mechanical properties and water resistance of PR/SD and PR/RH WPCs, both RH and SD offer great added value as fillers for PR based WPCs;SD having better interactions with PR matrix compared to RH.展开更多
Increasing global energy crisis and scarcity of petroleum resources has shifted focus of chemical industries to look for alternative raw material resources. The main focus of raw materials in wood adhesives, such as p...Increasing global energy crisis and scarcity of petroleum resources has shifted focus of chemical industries to look for alternative raw material resources. The main focus of raw materials in wood adhesives, such as petroleum and natural gas [1] [2], would be gradually replaced by renewable biopolymers. Starch is a relatively inexpensive and renewable product from abundant plants, easy processing and it has been extensively used as binders, sizing materials, glues and pastes [3], but its bonding capacity is not strong enough to glue wood [4]. Extensive research has been carried out on improving the cohesive properties, especially water resistance, of starch-based adhesives. In starch-based wood adhesive many new approaches have come forward for effective use it in wood/wood composite adhesive giving comparable performance as synthetic adhesives. This review of starch-based adhesives is made with the focus on starch modification methods for improving properties of starch-based adhesives.展开更多
Due to the demand from society for the consumption of ecological polymeric materials, one of the polymers that have satisfied this request is the poly (lacti</span><span style="font-family:Verdana;"...Due to the demand from society for the consumption of ecological polymeric materials, one of the polymers that have satisfied this request is the poly (lacti</span><span style="font-family:Verdana;">c acid) (PLA). This polymer is derived from renewable resources, it is recyclable and biodegradable. It presents a good understanding between the promising properties and the cost. However, a route to increase the mechanical</span><span style="font-family:Verdana;"> properties and reduce the cost of PLA is the elaboration of PLA based biocomposites by using fillers from natural waste. In this work, The effect of <i></span><i><span style="font-family:Verdana;">Typha</i></span></i><span style="font-family:Verdana;"> content on the morphological, rheological, thermal and mechanical properties of PLA matrix was studied. Four formulations were produced with different mass concentrations. The results showed an increase in the viscoelastic properties, as a function of the <i></span><i><span style="font-family:Verdana;">Typha</i></span></i><span style="font-family:Verdana;"> stem powder concentration. The DSC analysis showed an increase in the crystallinity rate of the various composites confirming the nucleating effect provided by the filler. TGA analysis indicated a decrease in the decomposition temperature of the composites. Mechanical tensile tests have shown a significant improvement in the mechanical properties mainly for the samples containing 45% (w/w) of <i></span><i><span style="font-family:Verdana;">Typha</i></span></i><span style="font-family:Verdana;"> powder.展开更多
Wood plastic biocomposites of biodegradable poly(butylene succinate) (PBS) and Padauk sawdust was successfully pre- pared by using a twin screw extruder and an injection molding machine. The effects of water absor...Wood plastic biocomposites of biodegradable poly(butylene succinate) (PBS) and Padauk sawdust was successfully pre- pared by using a twin screw extruder and an injection molding machine. The effects of water absorption and sunlight exposure on some properties of the composites were investigated. Water absorption of PBS composites was found to follow the Fick's law of diffusion, while the diffusion coefficient increased with increasing wood content. Maximum water absorption of around 4.5% was observed at 30 wt.% sawdust. Optical micrograph indicated the swelling of wood particles by around 1% - 3% after 30 days of water immersion. The tensile and flexural strengths reduced slightly both under the water immersion and sunlight exposure. After 90 days of exposure, the composites clearly looked paler than the non-weathered ones. Thermal scan indicated the re- duction of crystalline region due to the plasticization effect derived from water molecules.展开更多
3D printing in additive manufacturing is con-sidered as one of key technologies to the future high-pre-cision manufacturing in order to benefit diverse industriesin building construction, product development, biomedic...3D printing in additive manufacturing is con-sidered as one of key technologies to the future high-pre-cision manufacturing in order to benefit diverse industriesin building construction, product development, biomedicalinnovation, etc. The increasing applications of 3D printedcomponents depend primarily on their significant merits ofreduced weight, minimum used materials, high precisionand shorter production time. Furthermore, it is very crucialthat such 3D printed components can maintain the same oreven better material performance and product quality asthose achieved by conventional manufacturing methods.This study successfully fabricated 3D printed mechanicaltesting samples of PLA and PLA/wood fibre composites.3D printing parameters including infill density, layer heightand the number of shells were investigated via design ofexperiments (DOE), among which the number of shells wasdetermined as the most significant factor for maximisingtensile strengths of PLA samples. Further, DoE workevaluated the effect of material type (i.e., neat PLA andPLA/wood fibres) and the number of shells on tensile,flexural and impact strengths of material samples. It issuggested that material type is the only predominant factorfor maximising all mechanical strengths, which howeverare consistently lower for PLA/wood fibre compositeswhen compared with those of neat PLA. Increasing thenumber of shells, on the other hand, has been found toimprove almost all strength levels and decrease infillcavities.展开更多
文摘We produced Wood-Polymer Composites (WPCs) with phenolic resin (PR) filled with saw dust (SD) and rice husks (RH) in a PR:fillerratio of 60:40 wt.%. RH and SD were grinded and sieved into particles μm. The aim of this research work was to evaluate sawdust and rice husks as fillers for sustainable phenolic resin based WPCs. Therefore, we investigated the thermal stability of PR/RH and PR/SD WPCs then we studied and compared the tensile, flexural properties of PR/SD and PR/RH WPCs samples, as well as their dimensional stability after water absorption test. Furthermore, through ultraviolet light exposure, we evaluated the effects of photo-oxidation on the water stability and mechanical properties of PR/RH and PR/SD WPCs samples compared to unexposed ones. PR filled with SD presented better mechanical properties compared to PR/RH WPCs samples. However, PR/RH WPCs showed good mechanical properties, and better thermal resistance and better water repulsion capabilities compared to PR/SD WPCs samples. Although, long time UV exposure ended up lowering considerably the mechanical properties and water resistance of PR/SD and PR/RH WPCs, both RH and SD offer great added value as fillers for PR based WPCs;SD having better interactions with PR matrix compared to RH.
文摘Increasing global energy crisis and scarcity of petroleum resources has shifted focus of chemical industries to look for alternative raw material resources. The main focus of raw materials in wood adhesives, such as petroleum and natural gas [1] [2], would be gradually replaced by renewable biopolymers. Starch is a relatively inexpensive and renewable product from abundant plants, easy processing and it has been extensively used as binders, sizing materials, glues and pastes [3], but its bonding capacity is not strong enough to glue wood [4]. Extensive research has been carried out on improving the cohesive properties, especially water resistance, of starch-based adhesives. In starch-based wood adhesive many new approaches have come forward for effective use it in wood/wood composite adhesive giving comparable performance as synthetic adhesives. This review of starch-based adhesives is made with the focus on starch modification methods for improving properties of starch-based adhesives.
文摘Due to the demand from society for the consumption of ecological polymeric materials, one of the polymers that have satisfied this request is the poly (lacti</span><span style="font-family:Verdana;">c acid) (PLA). This polymer is derived from renewable resources, it is recyclable and biodegradable. It presents a good understanding between the promising properties and the cost. However, a route to increase the mechanical</span><span style="font-family:Verdana;"> properties and reduce the cost of PLA is the elaboration of PLA based biocomposites by using fillers from natural waste. In this work, The effect of <i></span><i><span style="font-family:Verdana;">Typha</i></span></i><span style="font-family:Verdana;"> content on the morphological, rheological, thermal and mechanical properties of PLA matrix was studied. Four formulations were produced with different mass concentrations. The results showed an increase in the viscoelastic properties, as a function of the <i></span><i><span style="font-family:Verdana;">Typha</i></span></i><span style="font-family:Verdana;"> stem powder concentration. The DSC analysis showed an increase in the crystallinity rate of the various composites confirming the nucleating effect provided by the filler. TGA analysis indicated a decrease in the decomposition temperature of the composites. Mechanical tensile tests have shown a significant improvement in the mechanical properties mainly for the samples containing 45% (w/w) of <i></span><i><span style="font-family:Verdana;">Typha</i></span></i><span style="font-family:Verdana;"> powder.
文摘Wood plastic biocomposites of biodegradable poly(butylene succinate) (PBS) and Padauk sawdust was successfully pre- pared by using a twin screw extruder and an injection molding machine. The effects of water absorption and sunlight exposure on some properties of the composites were investigated. Water absorption of PBS composites was found to follow the Fick's law of diffusion, while the diffusion coefficient increased with increasing wood content. Maximum water absorption of around 4.5% was observed at 30 wt.% sawdust. Optical micrograph indicated the swelling of wood particles by around 1% - 3% after 30 days of water immersion. The tensile and flexural strengths reduced slightly both under the water immersion and sunlight exposure. After 90 days of exposure, the composites clearly looked paler than the non-weathered ones. Thermal scan indicated the re- duction of crystalline region due to the plasticization effect derived from water molecules.
文摘3D printing in additive manufacturing is con-sidered as one of key technologies to the future high-pre-cision manufacturing in order to benefit diverse industriesin building construction, product development, biomedicalinnovation, etc. The increasing applications of 3D printedcomponents depend primarily on their significant merits ofreduced weight, minimum used materials, high precisionand shorter production time. Furthermore, it is very crucialthat such 3D printed components can maintain the same oreven better material performance and product quality asthose achieved by conventional manufacturing methods.This study successfully fabricated 3D printed mechanicaltesting samples of PLA and PLA/wood fibre composites.3D printing parameters including infill density, layer heightand the number of shells were investigated via design ofexperiments (DOE), among which the number of shells wasdetermined as the most significant factor for maximisingtensile strengths of PLA samples. Further, DoE workevaluated the effect of material type (i.e., neat PLA andPLA/wood fibres) and the number of shells on tensile,flexural and impact strengths of material samples. It issuggested that material type is the only predominant factorfor maximising all mechanical strengths, which howeverare consistently lower for PLA/wood fibre compositeswhen compared with those of neat PLA. Increasing thenumber of shells, on the other hand, has been found toimprove almost all strength levels and decrease infillcavities.