期刊文献+
共找到14,890篇文章
< 1 2 250 >
每页显示 20 50 100
Reaction pathways and selectivity in the chemo-catalytic conversion of cellulose and its derivatives to ethylene glycol:A review
1
作者 Yao Li Yuchun Zhang +2 位作者 Zhiyu Li Huiyan Zhang Peng Fu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期310-331,共22页
Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivati... Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol,and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose.It is desirable to develop a reusable,highly active catalyst to convert cellulose into ethylene glycol.This ideal catalyst might have one or more active sites described the conversion steps above.Here,we discuss the catalyst development of celluloseto-ethylene glycol,including tungsten,tin,lanthanide,and other transition metal catalysts,and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose,and the economic advantages of biomass-to-ethylene glycol are briefly introduced.The insights given in this review will facilitate further development of efficient catalysts,for addressing the global energy crisis and climate change related to the use of fossil fuels. 展开更多
关键词 ethylene glycol CELLULOSE Catalyst Retro-aldol condensation HYDROLYSIS Kinetics
下载PDF
Boosting kinetic separation of ethylene and ethane on microporous materials via crystal size control
2
作者 Yixuan Ma Cong Yu +5 位作者 Lifeng Yang Rimin You Yawen Bo Qihan Gong Huabin Xing Xili Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期85-91,共7页
The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C... The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance. 展开更多
关键词 ADSORPTION ADSORBENT ethylene Binary mixture Crystal size control Kinetic separation
下载PDF
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
3
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene Poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
下载PDF
Polyvinyl Acetate and Vinyl Acetate-Ethylene Hybrid Adhesive: Synthesis, Characterization, and Properties
4
作者 Ravindra V. Gadhave 《Open Journal of Polymer Chemistry》 2024年第1期1-18,共18页
The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were ... The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE. 展开更多
关键词 ethylene-Vinyl Acetate Dispersion Polyvinyl Acetate HYBRID WOOD ADHESIVE
下载PDF
Analysis of Ethylene Glycol Degumming Process and Characterization of Hemp Fibers 被引量:1
5
作者 池虹 秦智慧 +3 位作者 赵树元 刘柳 张瑞云 程隆棣 《Journal of Donghua University(English Edition)》 CAS 2023年第3期255-260,共6页
To overcome the shortcomings of traditional degumming process,an efficient and environmentally friendly ethylene glycol(EG) degumming process was adopted to degum hemp fibers.The surface morphology,chemical compositio... To overcome the shortcomings of traditional degumming process,an efficient and environmentally friendly ethylene glycol(EG) degumming process was adopted to degum hemp fibers.The surface morphology,chemical composition,chemical structures,and mechanical properties of the fiber samples were analyzed to explore the mechanism of the degumming process.It was found that the EG degumming process could be divided into the main degumming stage(heating) and the supplementary degumming stage(insulation).The removal rates of hemicellulose and lignin in the main degumming stage were 70.56% and 60.17%,respectively.In the supplementary degumming stage,9.95% hemicellulose and 25.39% lignin were removed.It is confirmed that EG can separate hemp fibers effectively with less damage,which holds great potential for the biomass fiber separation technology. 展开更多
关键词 hemp fiber degumming process ethylene glycol(EG) HEMICELLULOSE LIGNIN
下载PDF
Attenuation of ethylene signaling increases cotton resistance to a defoliating strain of Verticillium dahliae
6
作者 Tianyi Wang Muhammad Shaban +9 位作者 Junhui Shi Weiran Wang Shiming Liu Xinhui Nie Yu Yu Jie Kong Steven J.Klosterman Xianlong Zhang Alifu Aierxi Longfu Zhu 《The Crop Journal》 SCIE CSCD 2023年第1期89-98,共10页
The severity of Verticillium wilt on cotton caused by defoliating strains of Verticillium dahliae has gradually increased and threatens production worldwide. Identification of the molecular components of leaf defoliat... The severity of Verticillium wilt on cotton caused by defoliating strains of Verticillium dahliae has gradually increased and threatens production worldwide. Identification of the molecular components of leaf defoliation may increase cotton tolerance to V. dahliae. Ethylene, a major player in plant physiological processes, is often associated with senescence and defoliation of plants. We investigated the cotton–V.dahliae interaction with a focus on the role of ethylene in defoliation and defense against V. dahliae.Cotton plants inoculated with V. dahliae isolate V991, a defoliating strain, accumulated more ethylene and showed increased disease symptoms than those inoculated with a non-defoliating strain. In cotton with a transiently silenced ethylene synthesis gene(GhACOs) and signaling gene(GhEINs) during cotton–V. dahliae interaction, ethylene produced was derived from cotton and more ethylene increased cotton susceptibility and defoliation rate. Overexpression of AtCTR1, a negative regulator in ethylene signaling, in cotton reduced sensitivity to ethylene and increased plant resistance to V. dahliae.Collectively, the results indicated precise regulation of ethylene synthesis or signaling pathways improve cotton resistant to Verticillium wilt. 展开更多
关键词 COTTON Verticillium dahilae ethylene DEFOLIATION
下载PDF
Comparative transcriptome analysis of the climacteric of apple fruit uncovers the involvement of transcription factors affecting ethylene biosynthesis
7
作者 Tong Li Xiao Zhang +6 位作者 Yun Wei Yaxiu Xu Weiting Liu Hongjian Li Guangxin Yang Aide Wang Xiaoxue Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期659-669,共11页
Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanis... Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanism of climacteric-type fruit ripening is being carried out,some aspects remain unclear.In this study,we compared the transcriptomes of 0-Pre and 15-Post(pre-and post-climacteric fruit),and 15-Post and 15-MCP[fruit treated with 1-MCP(1-methylcyclopropene)].Various transcription factors,such as MADS-box,ERF,NAC,Dof and SHF were identified among the DEGs(differential gene expressions).Furthermore,these transcription factors were selected for further validation analysis by qRT-PCR.Moreover,yeast one hybrid(Y1H),β-glucuronidase(GUS)transactivation assay and dual-luciferase reporter assay showed that MdAGL30,MdAGL104,MdERF008,MdNAC71,MdDof1.2,MdHSFB2a and MdHSFB3 bound to MdACS1 promoter and directly regulated its transcription,thereby regulating ethylene biosynthesis in apple fruit.Our results provide useful information and new insights for research on apple fruit ripening. 展开更多
关键词 Apple RNA-Seq Fruit ripening ethylene Transcription factor
下载PDF
One-step ethylene separation from ternary C_(2) hydrocarbon mixture with a robust zirconium metal-organic framework
8
作者 Yuan Liu Hanting Xiong +5 位作者 Jingwen Chen Shixia Chen Zhenyu Zhou Zheling Zeng Shuguang Deng Jun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期9-15,共7页
One-step separation of high-purity ethylene(C_(2)H_(4))from C_(2) hydrocarbon mixture is critical but challenging because of the very similar molecular sizes and physical properties of C_(2)H_(4),ethane(C_(2)H_(6)),an... One-step separation of high-purity ethylene(C_(2)H_(4))from C_(2) hydrocarbon mixture is critical but challenging because of the very similar molecular sizes and physical properties of C_(2)H_(4),ethane(C_(2)H_(6)),and acetylene(C_(2)H_(2)).Herein,we report a robust zirconium metal-organic framework(MOF)Zr-TCA(H3TCA=4,4',4"-tricarboxytriphenylamine)with suitable pore size(0.6 nm×0.7 nm)and pore environment for direct C_(2)H_(4) purification from C_(2)H_(4)/C_(2)H_(2)/C_(2)H_(6) gas-mixture.Computational studies indicate that the abundant oxygen atoms and non-polar phenyl rings created favorable pore environments for the preferential binding of C_(2)H_(2) and C_(2)H_(6) over C_(2)H_(4).As a result,Zr-TCA exhibits not only high C_(2)H_(6)(2.28 mmol·g^(-1))and C_(2)H_(2)(2.78 mmol·g^(-1))adsorption capacity but also excellent C_(2)H_(6)/C_(2)H_(4)(2.72)and C_(2)H_(2)/C_(2)H_(4)(5.64)selectivity,surpassing most of one-step C_(2)H_(4) purification MOF materials.Dynamic breakthrough experiments confirm that Zr-TCA can produce high-purity C_(2)H_(4)(>99.9%)from a ternary gas mixture(1/9/90 C_(2)H_(2)/C_(2)H_(6)/C_(2)H_(4))in a single step with a high C_(2)H_(4) productivity of 5.61 L·kg^(-1). 展开更多
关键词 Zirconium metal-organic framework Adsorption Separation One-step ethylene purification
下载PDF
Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors
9
作者 Tengjie Wang Wenkai Li +2 位作者 Xuehui Ge Ting Qiu Xiaoda Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期243-250,共8页
High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the ... High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the transesterification of dimethyl carbonate(DMC)with ethylene glycol(EG)is provided in this work.However,this reaction is so fast that the reaction kinetics,which is essential for the industrial design,is hard to get by the traditional measuring method.In this work,an easy-to-assemble microreactor was used to precisely determine the reaction kinetics for the fast transesterification of DMC with EG using sodium methoxide as catalyst.The effects of flow rate,microreactor diameter,catalyst concentration,reaction temperature,and reactant molar ratio were investigated.An activity-based pseudohomogeneous kinetic model,which considered the non-ideal properties of reaction system,was established to describe the transesterification of DMC with EG.Detailed kinetics data were collected in the first 5 min.Using these data,the parameters of the kinetic model were correlated with the maximum average error of 11.19%.Using this kinetic model,the kinetic data at different catalyst concentrations and reactant molar ratios were predicted with the maximum average error of 13.68%,suggesting its satisfactory prediction performance. 展开更多
关键词 Microreactor KINETICS ethylene carbonate synthesis TRANSESTERIFICATION Sodium methoxide
下载PDF
Effects of Ethylene Tar-Based Pitch Coatings on the Electrochemical Properties of Graphite Anode Materials
10
作者 Xing Yicheng Dai Chang +6 位作者 Wu Qiang Wang Taoxiang Li Zhi Lei Jie Han Haibo Li Kang Wang Youhe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期41-50,共10页
To improve the electrochemical performance of graphite anode materials,pitches with various softening points(150℃,180℃,200℃,and 250℃)were prepared from ethylene tar and used to coat graphite through a liquid coati... To improve the electrochemical performance of graphite anode materials,pitches with various softening points(150℃,180℃,200℃,and 250℃)were prepared from ethylene tar and used to coat graphite through a liquid coating process.The effects of the softening point of the pitch and the coating amount on the microstructure and electrochemical properties of graphite were studied by methods including thermogravimetric analysis,X-ray diffraction,Raman spectroscopy,surface area analysis,scanning electron microscopy,transmission electron microscopy,and electrochemical testing.The graphite particles were coated uniformly by the pyrolytic carbon in the pitch.The coating changed the degree of graphitization,decreased the average specific surface area,and improved the electrochemical performance significantly.The best battery anode performance was obtained when the mass ratio of pitch to graphite was 10%,the heat treatment temperature was 1100℃,and the softening point of the pitch was 250℃.Under the optimum conditions,the irreversible capacity loss in the first cycle at 0.1 C was only 23 mAh/g,and the first Coulombic efficiency reached 94.2%.The capacity retention rate was 98.3%after 100 charge-discharge cycles at 0.1 C. 展开更多
关键词 ethylene tar PITCH GRAPHITE ANODE Li-ion batteries
下载PDF
Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis
11
作者 Jianyan Zeng Dan Yao +17 位作者 Ming Luo Lingli Ding Yi Wang Xingying Yan Shu’e Ye Chuannan Wang Yiping Wu Jingyi Zhang Yaohua Li Lingfang Ran Yonglu Dai Yang Chen Fanlong Wang Hanyan Lai Nian Liu Nianjuan Fang Yan Pei Yuehua Xiao 《The Crop Journal》 SCIE CSCD 2023年第3期774-784,共11页
Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate lig... Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality. 展开更多
关键词 Abscisic acid CAROTENOID Cotton fiber elongation ethylene ORANGE gene
下载PDF
Ethylene Copolymerization with Linear and End-Cyclized Olefins via a Metallocene Catalyst:Polymerization Behavior and Thermal Properties of Copolymers
12
作者 Changjiang Wu Minqiao Ren +5 位作者 Liping Hou Shuzhang Qu Xinwei Li Cui Zheng Jian Chen Wei Wang 《Engineering》 SCIE EI CAS CSCD 2023年第11期93-99,共7页
Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes.Polyolefin elastomers(POE)are a typical example.Due to cost,only a ... Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes.Polyolefin elastomers(POE)are a typical example.Due to cost,only a few linear a-olefins(e.g.,1-butene,1-hexene,and 1-octene)are used as comonomers in solution polymerization in industry.However,a-olefin comonomers with other structures may have different effects on polymerization in comparison with common linear ones.Moreover,the properties of the corresponding materials may differ significantly.In this work,copolymers of ethylene with linear and endcyclized a-olefins are synthesized using a metallocene catalyst.The copolymerization of ethylene with linear a-olefins results in a higher turn-over frequency(TOF)and lower incorporation than copolymerization with end-cyclized a-olefins,which may indicate that end-cyclized a-olefins have a higher coordination probability and lower insertion rate.In this reaction,the comonomer is distributed randomly in the polymer chain and efficiently destroys crystallization.End-cyclized a-olefins exhibit a much stronger crystallization destructive capacity(CDC)in the copolymer than linear a-olefins,possibly because linear a-olefins act mainly in the radial direction of the main chain of the polymer,while end-cyclized a-olefins act mainly in the axial direction of the main chain. 展开更多
关键词 Metallocene catalyst ethylene copolymerization Comonomer distribution Crystallization destructive capacity
下载PDF
Regulating the Localization of Intumescent Flame Retardant for Improving the Flame Retardancy of Ethylene-vinyl Acetate Copolymer Using Polyamide 6 as a Charring Agent
13
作者 高喜平 ZHAO Pan +3 位作者 YAO Dahu 陆昶 YUE Ruiheng SHENG Qi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期701-711,共11页
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ... Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy. 展开更多
关键词 intumescent flame retardant charring agent LOCALIZATION polyamide 6 ethylene vinyl acetate
下载PDF
Extend ethylene aromatization single-event kinetic modeling with physical and chemical descriptor based on ZSM-5 catalyst
14
作者 Jia-Rong Xie Fang Jin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3841-3853,共13页
The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distri... The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distribution concept were established and extend for the ethylene aromatization process,which can reduce the kinetic parameters and simplify the reaction network by comparison with the SEMK model including subtype elementary steps based on the type of carbenium ions.Further introducing deactivation parametersφinto the model and applying the linear free energy model to the deactivation experimental data,the obtained deactivation parametersφindicate that the carbon deposition precursors have the greatest impact on reducing the reaction rate of single-molecular reactions and the smallest impact on the hydrogen transfer reaction.Meanwhile,according to the change of reaction enthalpy,effect of carbenium ion structure on methylation,ethylation,cyclization and endo-βscission was investigated by introducing linear free energy concept into the SEMK model.The effect of different acid strengths on elementary steps was investigated based on the acid strength distribution model,it was found that the methylation and oligomerization reactions,the ali-βscission reaction,endo-βscission reaction and the cyclization reaction were more sensitive to strong acidity sites.The physisorption and chemisorption heat are separated from the protonation heat in the linear free energy kinetic model and the acid strength distribution kinetic model,and the absolute values of the obtained physisorption and chemisorption heat increase with the carbon number of carbenium ions.Furthermore,the parameters of the acid strength distribution kinetic model were applied to propane dehydroaromatization on H-ZSM-5 and the ethane dehydroaromatization on Zn/ZSM-5 to confirm the independence of parameters in the SEMK model with the similar reaction network. 展开更多
关键词 Kinetic model ethylene aromatization Acid strength distribution Linear free energy theory
下载PDF
Ethylene purification in a metal–organic framework over a wide temperature range via pore confinement
15
作者 Xue-Qian Wu Peng-Dan Zhang +4 位作者 Xin Zhang Jing-Hao Liu Tao He Jiamei Yu Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1703-1710,共8页
The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a... The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a microporous metal–organic framework(MOF) BUT-315-a as a C_(2)H_(6)-selective adsorbent for the separation of C2H6/C2H4gas mixture. BUT-315-a combines good IAST selectivity of 2.35 with high C_(2)H_(6)uptake of 97.5 cm^(3)g^(-1), giving superior high separation potential ΔQ(2226 mmol L^(-1)) for equimolar C_(2)H_(6)/C_(2)H_(4) at 298 K. Impressively, such excellent performance can be preserved at higher temperatures of 313 and 323 K to accommodate industrial conditions. Efficient dynamic separation performance of BUT-315-a has been demonstrated by column breakthrough experiments under varied temperatures and gas ratios. Theoretical calculations further reveal multiple synergistic interactions between C_(2)H_(6) and the framework. This work highlights a new benchmark material for C_(2)H_(6)/C_(2)H_(4)separation and provides guidance for designing adsorbent for separation applications. 展开更多
关键词 Metal–organic framework Adsorptive separation ethylene purification Temperature adaptability Pore confinement
下载PDF
Development and Performance Evaluation of Catalyst for Productive Ethylene Cracking Feedstock in Selective Hydrocracking of Straight Run Diesel Oil
16
作者 Tiezhen Zhang Xin Zhang +5 位作者 Yungang Jia Haiyan Li Fangming Xie Zijin Yan Hongyu Tian Hongyu Zhang 《Open Journal of Applied Sciences》 CAS 2023年第3期414-423,共10页
The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable f... The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable for selective hydrocracking of straight run diesel oil to produce high-quality ethylene cracking feedstock at low cost was developed, by optimizing the composition of catalyst support materials, using amorphous silicon aluminum and aluminum oxide with high mesopore content as the main support, and modified Y zeolite with excellent aromatic ring opening selectivity as the acidic component. The catalyst has in-depth characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N<sub>2</sub>-low temperature adsorption-desorption, NH<sub>3</sub>-temperature-programmed desorption, and IR techniques. And its catalytic cracking straight run diesel oil performance was evaluated. The results show that the prepared catalyst has high polycyclic aromatic hydrocarbon ring opening cracking selectivity. However, alkanes retained in diesel distillates can achieve the goal of producing more ethylene cracking feedstocks with low BMCI value under low and moderate pressure conditions. This work may shed significant technical insight for oil refining transformation. 展开更多
关键词 Straight Run Diesel Mild Hydrocracking CATALYST ethylene Cracking Feedstock Process Research
下载PDF
The HY5 transcription factor negatively regulates ethylene production by inhibiting ACS1 expression under blue light conditions in pear
17
作者 Weiting Liu Lichao Zhang +2 位作者 Li Ma Hui Yuan Aide Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第5期920-930,共11页
Ethylene is the main factor controlling fruit ripening of pear(Pyrus ussuriensis).Ethylene production rate is negatively correlated with fruit shelf life;therefore,it is important to decrease the ethylene levels for o... Ethylene is the main factor controlling fruit ripening of pear(Pyrus ussuriensis).Ethylene production rate is negatively correlated with fruit shelf life;therefore,it is important to decrease the ethylene levels for optimal fruit storage.Here,we observed that blue light treatment could inhibit ethylene production and promote the expression of ELONGATED HYPOCOTYL 5(PuHY5),a basic leucine zipper domain(bZIP)transcription factor.The following studies showed that PuHY5 could bind to the promoter of ACC synthase 1(PuACS1),a rate-limiting enzyme in ethylene biosynthesis,and inhibit its expression.For pears in which Pu HY5 was silenced,the ethylene production and PuACS1 expression were much higher than those in the control fruit.These results demonstrated that blue light inhibited ethylene production through the induction of Pu HY5 in pear.Our finding provides a new method for prolonging fruit shelf life. 展开更多
关键词 PEAR Pyrus ussuriensis Fruit ripening Blue light ethylene synthesis PuHY5 PuACS1
下载PDF
CLOF Based Outlier Detection Algorithm of Temperature Data for Ethylene Cracking Furnace
18
作者 Yidan Xin Shaolin Hu +1 位作者 Wenzhuo Chen He Song 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第4期50-57,共8页
The flue temperature is one of the important indicators to characterize the combustion state of an ethylene cracker furnace,the outliers of temperature data can lead to the false alarm.Conventional outlier detection a... The flue temperature is one of the important indicators to characterize the combustion state of an ethylene cracker furnace,the outliers of temperature data can lead to the false alarm.Conventional outlier detection algorithms such as the Isolation Forest algorithm and 3-sigma principle cannot detect the outliers accurately.In order to improve the detection accuracy and reduce the computational complexity,an outlier detection algorithm for flue temperature data based on the CLOF(Clipping Local Outlier Factor,CLOF)algorithm is proposed.The algorithm preprocesses the normalized data using the cluster pruning algorithm,and realizes the high accuracy and high efficiency outlier detection in the outliers candidate set.Using the flue temperature data of an ethylene cracking furnace in a petrochemical plant,the main parameters of the CLOF algorithm are selected according to the experimental results,and the outlier detection effect of the Isolation Forest algorithm,the 3-sigma principle,the conventional LOF algorithm and the CLOF algorithm are compared and analyzed.The results show that the appropriate clipping coefficient in the CLOF algorithm can significantly improve the detection efficiency and detection accuracy.Compared with the outlier detection results of the Isolation Forest algorithm and 3-sigma principle,the accuracy of the CLOF detection results is increased,and the amount of data calculation is significantly reduced. 展开更多
关键词 temperature data outlier detection ethylene cracker furnace CLUSTERING data clipping LOF
下载PDF
Significance of Nanoparticles Aggregation with Cattaneo-Christov Heat Flux on the Water and Ethylene Glycol Mixture Based MWCNTs-Nanofluid Flow over a Stretching Cylinder
19
作者 Muhammad Ramzan Nazia Shahmir 《World Journal of Engineering and Technology》 2023年第4期1019-1029,共11页
This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of... This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. . 展开更多
关键词 MWCNTs-Nanofluid Nanoparticles Aggregation Water + ethylene Glycol Mixture Cattaneo-Christov Heat Flux Stretching Cylinder
下载PDF
Synthesis, Purification and Characterization of Amphiphilic and Microphase Separated Graft Copolymer Polystyrene-g-Poly(ethylene oxide)
20
作者 QIU Yong-xing, YU Xiao-jie, FENG Lin-xian and YANG Shi-lin (Department of Polymer Science and Engineering, ZheJiang University, Hangzhou) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1992年第3期278-286,共9页
The present paper covers the poly (ethylene oxide) macromer with vinyl benzyl terminal group (PEO-VB) prepared by deactivation of the alkoxide function of mono-functional 'living' PEO chains with vinyl benzyl ... The present paper covers the poly (ethylene oxide) macromer with vinyl benzyl terminal group (PEO-VB) prepared by deactivation of the alkoxide function of mono-functional 'living' PEO chains with vinyl benzyl chloride (VBC). The obtained macromers were subjected to careful purification and detailed characterization. A new kind of amphiphilic polystyrene-g-poly(ethylene oxide) (PS-g-PEO) with both mi-crophase separated and PEO side chains was synthesized from radical copolymerization of PEO-VB macromer with styrene monomer. An improved purification method, referred as 'selective dissolvation', was established for the isolation of graft copolymers from the grafting products, and the purity and yield of the purified copolymers were satisfactory. The well-defined structure of the purified copolymers was confirmed by IR, 1H NMR and GPC. The bulk composition of the graft copolymers was determined by a well-established first derivative UV spectrometry. Various experimental parameters controlling the copolymerization were also studied. The results indicate that the feed ratio of macromer to styrene (M/S) was the most important factor in determining the composition of the copolymers. Thus a series of PS-g-PEO with a wide range of bulk compositions were obtained simply by adjusting the value of M/S. As clearly indicated by transmission electron microscopy, this amphiphilic graft copolymers may readily form microphase separated structures. 展开更多
关键词 Poly(ethyiene oxide) macromer polystyrene-g-poly(ethylene oxide) Pu-rification of graft copolymer Amphiphilic and microphase separated structure Biocom-patible polymer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部