Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of L...Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of Li_(2)S.To address these issues,a novel composite,using electrospinning technology,consisting of Fe_(3)Se_(4)and porous nitrogen-doped carbon nanofibers was designed for the interlayer of LSBs.The porous carbon nanofiber structure facilitates the transport of ions and electrons,while the Fe_(3)Se_(4)material adsorbs lithium polysulfides(LiPSs)and accelerates its catalytic conversion process.Furthermore,the Fe_(3)Se_(4)material interacts with soluble LiPSs to generate a new polysulfide intermediate,Li_(x)FeS_(y)complex,which changes the electrochemical reaction pathway and facilitates the three-dimensional deposition of Li_(2)S,enhancing the reversibility of LSBs.The designed LSB demonstrates a high specific capacity of1529.6 mA h g^(-1)in the first cycle at 0.2 C.The rate performance is also excellent,maintaining an ultra-high specific capacity of 779.7 mA h g^(-1)at a high rate of 8 C.This investigation explores the mechanism of the interaction between the interlayer and LiPSs,and provides a new strategy to regulate the reaction kinetics and Li_(2)S deposition in LSBs.展开更多
Lithium–sulfur(Li–S)batteries have extremely high theoretical energy density that make them as promising systems toward vast practical applications.Expediting redox kinetics of sulfur species is a decisive task to b...Lithium–sulfur(Li–S)batteries have extremely high theoretical energy density that make them as promising systems toward vast practical applications.Expediting redox kinetics of sulfur species is a decisive task to break the kinetic limitation of insulating lithium sulfide/disulfide precipitation/dissolution.Herein,we proposed a porphyrinderived atomic electrocatalyst to exert atomic-efficient electrocatalytic effects on polysulfide intermediates.Quantifying electrocatalytic efficiency of liquid/solid conversion through a potentiostatic intermittent titration technique measurement presents a kinetic understanding of specific phase evolutions imparted by the atomic electrocatalyst.Benefiting from atomically dispersed“lithiophilic”and“sulfiphilic”sites on conductive substrates,the finely designed atomic electrocatalyst endows Li–S cells with remarkable cycling stablity(cyclic decay rate of 0.10%in 300 cycles),excellent rate capability(1035 mAh g−1 at 2 C),and impressive areal capacity(10.9 mAh cm−2 at a sulfur loading of 11.3 mg cm−2).The present work expands atomic electrocatalysts to the Li–S chemistry,deepens kinetic understanding of sulfur species evolution,and encourages application of emerging electrocatalysis in other multielectron/multiphase reaction energy systems.展开更多
Lithium-sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density.However,the dissolution of discharge intermediate products to the electrol...Lithium-sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density.However,the dissolution of discharge intermediate products to the electrolyte,the volume change and poor electric conductivity of sulfur greatly limit their further commercialization.Herein,we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays(TiO2 NTs@Ni)prepared by an anodization and electrodeposition method.The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons.Moreover,the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode.As a result,the TiO2 NTs@Ni-S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs,and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22372103)Guangdong Basic and Applied Basic Research Foundation,China(2021A1515010241,2024A1515010032)the Shenzhen Science and Technology Foundation,China(JCYJ20220531103216037)。
文摘Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of Li_(2)S.To address these issues,a novel composite,using electrospinning technology,consisting of Fe_(3)Se_(4)and porous nitrogen-doped carbon nanofibers was designed for the interlayer of LSBs.The porous carbon nanofiber structure facilitates the transport of ions and electrons,while the Fe_(3)Se_(4)material adsorbs lithium polysulfides(LiPSs)and accelerates its catalytic conversion process.Furthermore,the Fe_(3)Se_(4)material interacts with soluble LiPSs to generate a new polysulfide intermediate,Li_(x)FeS_(y)complex,which changes the electrochemical reaction pathway and facilitates the three-dimensional deposition of Li_(2)S,enhancing the reversibility of LSBs.The designed LSB demonstrates a high specific capacity of1529.6 mA h g^(-1)in the first cycle at 0.2 C.The rate performance is also excellent,maintaining an ultra-high specific capacity of 779.7 mA h g^(-1)at a high rate of 8 C.This investigation explores the mechanism of the interaction between the interlayer and LiPSs,and provides a new strategy to regulate the reaction kinetics and Li_(2)S deposition in LSBs.
基金This work was supported by the National Key Research and Development Program(2016YFA0202500)National Natural Science Foundation of China(21776019,21808124,and U1801257)We thank Jin Xie and Meng Zhao for their helpful discussion.
文摘Lithium–sulfur(Li–S)batteries have extremely high theoretical energy density that make them as promising systems toward vast practical applications.Expediting redox kinetics of sulfur species is a decisive task to break the kinetic limitation of insulating lithium sulfide/disulfide precipitation/dissolution.Herein,we proposed a porphyrinderived atomic electrocatalyst to exert atomic-efficient electrocatalytic effects on polysulfide intermediates.Quantifying electrocatalytic efficiency of liquid/solid conversion through a potentiostatic intermittent titration technique measurement presents a kinetic understanding of specific phase evolutions imparted by the atomic electrocatalyst.Benefiting from atomically dispersed“lithiophilic”and“sulfiphilic”sites on conductive substrates,the finely designed atomic electrocatalyst endows Li–S cells with remarkable cycling stablity(cyclic decay rate of 0.10%in 300 cycles),excellent rate capability(1035 mAh g−1 at 2 C),and impressive areal capacity(10.9 mAh cm−2 at a sulfur loading of 11.3 mg cm−2).The present work expands atomic electrocatalysts to the Li–S chemistry,deepens kinetic understanding of sulfur species evolution,and encourages application of emerging electrocatalysis in other multielectron/multiphase reaction energy systems.
基金The authors acknowledge the financial support from the Natural Science Foundation of Beijing (No. L182062)the Organization Department of Beijing Talents Project (2018000021223ZK21)+2 种基金the Beijing Nova Program (Z171100001117077)the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No. 2014QJ02).
文摘Lithium-sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density.However,the dissolution of discharge intermediate products to the electrolyte,the volume change and poor electric conductivity of sulfur greatly limit their further commercialization.Herein,we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays(TiO2 NTs@Ni)prepared by an anodization and electrodeposition method.The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons.Moreover,the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode.As a result,the TiO2 NTs@Ni-S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs,and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.