Stannous oxalate was prepared efficiently and characterized by XRD and FT-IR. It exhibited higher catalytic activity and had profitable effect than tetrabutyl titanate and stannous octoate for the synthesis of polytri...Stannous oxalate was prepared efficiently and characterized by XRD and FT-IR. It exhibited higher catalytic activity and had profitable effect than tetrabutyl titanate and stannous octoate for the synthesis of polytrimethylene terephthalate (PTT) via esterification-route. Over this catalyst, the degree of esterification of pure terephthalic acid was up to 94.4% at 260 ℃ after 1.5 h,while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PTT polyester, polymerized at 260 ℃,60 Pa for 2 h, was 0.8950 dL/g and 15 mol/t, respectively. Stannous oxalate was a promising catalyst for the synthesis of PTT polyester.展开更多
Chelate tetra(acetylacetonato) tin(Ⅳ) was prepared and used as catalyst for polytrimethylene terephthalate synthesis.It exhibited higher catalytic activity than tetrabutyl titanate,butyltinhydroxide oxide and dibutyl...Chelate tetra(acetylacetonato) tin(Ⅳ) was prepared and used as catalyst for polytrimethylene terephthalate synthesis.It exhibited higher catalytic activity than tetrabutyl titanate,butyltinhydroxide oxide and dibutyltin oxide.Decrease in reaction time, content of terminal carboxyl group,color intensity and increase in intrinsic viscosity were observed.The unique molecular structure can be considered as factor remarkably improving the catalytic activity of tetra(acetylacetonato) tin(Ⅳ).展开更多
Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of th...Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.展开更多
Poly (trimethylene-co-ethylene terephthalate) with various compositions of diol has been synthesized. The crystallization of copolyesters with high comonomer content was observed by both wide-angle X-ray diffraction (...Poly (trimethylene-co-ethylene terephthalate) with various compositions of diol has been synthesized. The crystallization of copolyesters with high comonomer content was observed by both wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). It was found that the copolyesters become less crystallizable with the involvement of the comonomer, the crystals of crystallizable copolyesters come from PTT or PET homopolymers. The glass transition temperature (Tg) of the copolyester increases with increasing PET component in the copolyester, and the relationship between Tg and composition obey both Fox equation and additive law, the former is better in describing this relationship.展开更多
文摘Stannous oxalate was prepared efficiently and characterized by XRD and FT-IR. It exhibited higher catalytic activity and had profitable effect than tetrabutyl titanate and stannous octoate for the synthesis of polytrimethylene terephthalate (PTT) via esterification-route. Over this catalyst, the degree of esterification of pure terephthalic acid was up to 94.4% at 260 ℃ after 1.5 h,while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PTT polyester, polymerized at 260 ℃,60 Pa for 2 h, was 0.8950 dL/g and 15 mol/t, respectively. Stannous oxalate was a promising catalyst for the synthesis of PTT polyester.
基金the National High Technology Research and Development Program of China(No. 2003AA321010)the Innovation Research Fund of Graduate University,Chinese Academy of Sciences(2006)
文摘Chelate tetra(acetylacetonato) tin(Ⅳ) was prepared and used as catalyst for polytrimethylene terephthalate synthesis.It exhibited higher catalytic activity than tetrabutyl titanate,butyltinhydroxide oxide and dibutyltin oxide.Decrease in reaction time, content of terminal carboxyl group,color intensity and increase in intrinsic viscosity were observed.The unique molecular structure can be considered as factor remarkably improving the catalytic activity of tetra(acetylacetonato) tin(Ⅳ).
文摘Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.
文摘Poly (trimethylene-co-ethylene terephthalate) with various compositions of diol has been synthesized. The crystallization of copolyesters with high comonomer content was observed by both wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). It was found that the copolyesters become less crystallizable with the involvement of the comonomer, the crystals of crystallizable copolyesters come from PTT or PET homopolymers. The glass transition temperature (Tg) of the copolyester increases with increasing PET component in the copolyester, and the relationship between Tg and composition obey both Fox equation and additive law, the former is better in describing this relationship.