The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba...The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.展开更多
The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean an...The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean and reusable resources meets the satisfaction of current demands.In this study,flame-retardant rubber seed oil-based plasticize(FRP)was prepared via epoxidation reaction and ring opening addition reactions,which was used as a flame-resistant plasticizer for polyvinyl chloride to replace petroleum-based phthalate plasticizer.When DOP was replaced with FRP,the torque of PVC blends increased from 11.4 to 18.4 N⋅m,the LOI value increased from 24.3%for PVC-FRP-0%to 33.1%for PVC-FRP-20.The THR value diminished from 39 MJ/m^(2)(pertaining to PVC-FRC-0)to 22 MJ/m^(2)Tg increased from 23°C to 47°C,the weight loss of plasticized PVC blends significantly reduced from 22.6%to 2.8%in leaching tests.The study provided a new way to prepare flame retardant plasticizer using rubber seed oil as raw material.展开更多
To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried o...To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously.展开更多
Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and...Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials.展开更多
Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide...Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.展开更多
Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30...Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.展开更多
To enhance the blood compatibility of Polyvinyl Chloride (PVC) film, the film was modified by SO2/O2 gas plasma treatment. The effect of surface sulfonation of PVC treated by various SO2/O2 gas plasma depended on the ...To enhance the blood compatibility of Polyvinyl Chloride (PVC) film, the film was modified by SO2/O2 gas plasma treatment. The effect of surface sulfonation of PVC treated by various SO2/O2 gas plasma depended on the volume ratio O2/(SO2 +O2). When the volume ratio was 0.5, the effect of sulfonation was the best. Sulfonic acid groups were specifically and efficiently introduced onto the PVC surface, which was proved by X-ray photoelectron spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transfer Infrared (ATR-FTIR) spectroscopy. The surface microstructure of modified PVC film was studied with scanning electron microscopy (SEM). The antithrombogenicity of the samples was determined by the activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and plasma recalcification time (PRT) tests and platelet adhesion experiment. The results indicated that the antithrombogenicity of modified PVC was improved remarkably.展开更多
The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When...The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When EDPM and DCP are added to the blends simultaneously, the tensile properties could be improved significantly, especially for the blends with LDPE matrix. For example, incorporation of 10/1 (mass ratio) EPDM/DCP improves the tensile strength of the LDPE/PVC (mass ratio 80/20) blend from 7.9 MPa to 8.5 MPa and the elongation at break from 25% to 503%. Results from selective extraction, phase-contrast microscopy and thermal analysis reveal that the improvement in the tensile properties of the blends with LDPE matrix is principally due to the formation of a fine crosslinking network of the LDPE and EPDM phase. The outstanding modification effect of EPDM is explained by its dual functions: molecular entanglement with LDPE and the enhanced efficiency of DCP in the blends.展开更多
This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but ...This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but also leads to an additional risk due to the generation of polyvinyl chloride (PVC) combustion gases. A mathematical model is proposed to calculate chloride ingress profiles in fire damaged concrete, so as to explore the service life prediction of the structure. Rapid Chloride Migration (RCM) test was carried out to determine the chloride diffusion coefficients for the application of the mathematical model. Finally, the detected results of a reported case testified to the validity of the mathematical model.展开更多
By means of molecular dynamics simulation, the transition of the conformations of polyvinyl chloride during a cooling process from 600 to 300 K was studied. The results show that the amorphous polyvinyl chloride chain...By means of molecular dynamics simulation, the transition of the conformations of polyvinyl chloride during a cooling process from 600 to 300 K was studied. The results show that the amorphous polyvinyl chloride chain experiences the melting state, elastic state and glass state and the conformations can be characterized by the increases of the trans-state of C--C--C--C and the near gauche-state of C--C--C--C1 with the decrease of temperature. It is found that the transition of the conformations is driven mainly by the Coulomb interaction between chain segments.展开更多
The morphology of polyvinyl chloride/polystyrene (PVC/PS) blend samples with different mass ratios, prepared by means of solution casting and melt mixing, have been successfully examined by electron microprobe analysi...The morphology of polyvinyl chloride/polystyrene (PVC/PS) blend samples with different mass ratios, prepared by means of solution casting and melt mixing, have been successfully examined by electron microprobe analysis (EMP). This experiment was performed in a scanning electron microscope attached to an energy dispersive X-ray analyzer. Differential scanning calorimetry was also used to investigate the phase separation of the blends. The results show that PVC and PS are incompatible and the blends have sea-islands phase structures. Blends prepared via melt mixing have finer phase-dispersion than those prepared via solution casting.展开更多
The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experim...The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating.展开更多
The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the requir...The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the required properties during its processing.However,these two additives easily migrate when samples are obtained by physical mixing of the additives with PVC.This causes the reduction of PVC sample efficacy and the increase in the formation of organic by-products in the radiolysis process.In this work,two kinds of grafted PVC samples(tungoil derivative grafted PVC and Atz grafted PVC,abbreviated as P-GT4 and P-AZ3)were synthesized by chemical grafting of 3-amino-1,2,4-triazole(Atz)and tung-oil derivative on PVC,respectively.These two PVC samples were then blended at different mass ratios to obtain hybrid PVC materials with excellent plasticization,thermal stability and migration resistance ability.Differential scanning calorimetry(DSC),discoloration,Congo red test and thermogravimetric analysis(TGA)showed that when the mass ratio of P-GT4 to P-AZ3 in the mixed PVC resin was 1:3,the resulting P1:3-GT4-AZ3(P4)presented the best plasticization and thermal stability.The kinetics of thermal decomposition showed that the activation energy of P4 was much higher than that of the reference material[PVC/DOTP/CaSt2/ZnSt2,PVC/CZ41 for short]at mass lossα=20%and 80%.In addition,the leaching test showed that P4 material possessed excellent migration resistance ability.展开更多
In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis af...In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis after saponification.In addition,the structure of the target product was confirmed by Fourier transform infrared(FTIR)spectroscopy,nuclear magnetic resonance(NMR)spectroscopy,and Raman spectroscopy.COSOCE was used as plasticizer-modified polyvinyl chloride(PVC)membranes.The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy(SEM).The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements,universal testing machine,thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC).The results revealed that(1)The COSOCE-modified PVC membranes exhibit a good microscopic morphology.Combined with energy-dispersive X-ray spectroscopy(EDS)and contact angle measurement results,the COSOCE-modified PVC membranes are confirmed to be a hydrophilic material.(2)The modified PVC membrane with 60%COSOCE exhibited the best mechanical properties.The tensile strength reached 23.56±2.94 MPa.(3)COSOCE-modified PVC material exhibited better thermal stability,with a loss rate of less than 75%at the end of the first decomposition stage.Compared with that of the dioctyl-phthalate(DOP)-modified PVC membrane,the initial decomposition temperature of PVC was increased by 1.17°C–8.17°C,and the residual rate was increased by 0.67%–5.75%.The carbon–carbon double bond in the COSOCE molecular structure can remove the free radicals generated during the degradation of PVC material and slow down the decomposition rate of PVC.In addition,the double bond can be cross-linked partially with the PVC molecular chain containing the conjugated polyene structure,thereby increasing the movement resistance of the PVC molecular chain segment.Hence,COSOCE can replace DOP as a PVC plasticizer.展开更多
Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms ...Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms corrosive hydrogen chloride(HCl)during the chemical recycling,which may cause severe catalyst deactivation and equipment damage.However,the investigation on catalytic pyrolysis(the major route for plastics chemical recycling)of the PVC containing mixed plastics has been rarely reported.Here,catalytic co-pyrolysis of PVC and polyethylene(PE)was studied over an aromatization catalyst,Pt/ZSM-5,since the basic building block aromatics are desired products from plastics chemical recycling.The poisoning effect of PVC vapor on the catalyst stability was explored by collective efforts of thorough product analysis and catalyst characterization.It was found that the HCl evolving from PVC has an autocatalytic effect that promotes the scission of dehydrochlorinated PVC,resulting in the high yield of benzene and acetylene from PVC.On the other hand,the presence of PVC suppressed the aromatics formation from PE,largely due to the poisoning effect of PVC-derived HCl on the Pt/ZSM-5.The deactivation is irreversible as evidenced by the decreased zeolite crystallinity and the loss of strong acid sites that are key to the aromatization,possibly due to the removal of framework Al upon the interaction with HCl.The modification with octadecylphosphonic acid only slightly alleviated the PVC poisoning effect.The insights on the PVC poisoning of zeolite catalysts provided in this work may guide the process design of chemical recycling of PVC containing waste plastics.展开更多
Nanoplasctics(NPs),which are very small in particle size,exert toxic effect to organisms.Additionally,compared to original NPs,photodegraded NPs would pose higher toxicity.This is because their relatively higher speci...Nanoplasctics(NPs),which are very small in particle size,exert toxic effect to organisms.Additionally,compared to original NPs,photodegraded NPs would pose higher toxicity.This is because their relatively higher specific surface areas and the presence of additives which can more easily leach.How original NPs and aged NPs affect plant growth has not been widely investigated.This work chose polyvinyl chloride NPs(PVC-NPs)that were subjected to up to 1000 h UV light radiation to explore the impact of PVC-NPs on the growth of pea seedlings(Pisum Sativum L.).The results indicated the existence of PVC-NPs with longer UV light radiation time and higher concentrations had more negative influences on pea seedlings’growth such as germination rate(decreased by 10.6%–22.5%),stem length(decreased by 2.8%–8.1%),dry weight(decreased by 6.3%–7.1%)and fresh weight(decreased by 6.7%–14.8%).It was also noted that photodegraded PVC-NPs resulted in damage to leaf stomata and roots,hindering photosynthesis and absorption of nutrients and hence the decrease in chlorophyll and soluble sugar contents.According to transcriptomic investigation results,the presence of aged PVC-NPs primarily influenced protein processing in endoplasmic reticulum(upregulated metabolic pathway)and phenylpropanoid biosynthesis(downregulated metabolic pathway)of pea seedlings.These results provide an in-depth understanding of how NPs influence the growth of plants.展开更多
Colored layered double hydroxides (LDHs) can be synthesized by introducing colored cations such as Fe^3+ and Cr^3 +, which call be used as thermal stabilizers for polyvinyl chloride (PVC). The yellowish Mg/Fe an...Colored layered double hydroxides (LDHs) can be synthesized by introducing colored cations such as Fe^3+ and Cr^3 +, which call be used as thermal stabilizers for polyvinyl chloride (PVC). The yellowish Mg/Fe and bluish Mg/Cr LDHs are prepared by the co-precipitation method. The results show that the MgsCr_ CO3 and Mg3Fe_ CO3 colored layered double hydroxides can stabilize PVC for more than 30 min under the thermal aging temperature of 180 ℃. The preparation can use cheap Mg(OH) 2 instead of MgCl2, which produces a much smaller amount of the by-product NH4Cl. It is known that NH4Cl is a cheap fertilizer that is difficult to sell; therefore, the preparation is much greener and more economic than the one using magnesium salt.展开更多
The flow process of unplasticized polyvinyl chloride (U PVC) through the mixing zone of intermeshing counter rotating and co rotating twin screw extruders (TSEs) were numerically simula ted by the finite element m...The flow process of unplasticized polyvinyl chloride (U PVC) through the mixing zone of intermeshing counter rotating and co rotating twin screw extruders (TSEs) were numerically simula ted by the finite element method. Three dimensional isothermal flow field of U-PVC in two kinds of TSE was calculated. The mixing performance of the screw elements of the extruders was statistically analyzed by particle tracking method. The dispersive mixing performance was characterized by the mixing index, the logarithm of stretching, and the segregation scale. The distributive mixing per forulance was characterized by the resident time distribution. The results indicate that the counter rotating TSE can build higher pressure and generate higher axial velocity and shear rate, whereas the co rotating TSE has better performance in dispersive and distributive mixing.展开更多
In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are car...In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are carried out at 63 ℃ with a small constant stress by a dynamic mechanical analyzer (DMA). The Struik-Kohlrausch (SK) formula and Struik shifting methods are used to describe these creep data for various physical aging time. A new phenomenological model based on the multiple relaxation mechanisms of an amorphous polymer is developed to quantitatively characterize the SK parameters (the initial creep compliance, the characteristic retardation time, and the shape factor) determined by the aging time. It is shown that the momentary creep compliance curve of the PVC at 63℃ can be very well fitted by the SK formula for each aging time. However, the SK parameters for the creep curves are not constant during the aging process at the elevated temperatures, and the evolution of these parameters and the creep rate versus aging time curves at the double logarithmic coordinafes have shown a nonlinear phenomenon. Moreover, the creep master curves obtained by the superposition with the Struik shifting methods are unsatisfactory in such a case. Finally, the predicted results calculated from the present model incorporating with the SK formula are in excellent agreement with the creep experimental data for the PVC isothermally aged at the temperature relatively close to the glass transition temperature.展开更多
基金supported by the Natural Science Foundation Project of Liaoning Provincial Department of Education of China under Grant No.JJL201915404,Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22E080024 and Zhejiang Province Department of Education Fund of China under Grant No.Y202146776.
文摘The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.
基金funded by the Science and Technology Project of Henan Province(202102310593)and Science and Technology Project of Kaifeng City(2002003).
文摘The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean and reusable resources meets the satisfaction of current demands.In this study,flame-retardant rubber seed oil-based plasticize(FRP)was prepared via epoxidation reaction and ring opening addition reactions,which was used as a flame-resistant plasticizer for polyvinyl chloride to replace petroleum-based phthalate plasticizer.When DOP was replaced with FRP,the torque of PVC blends increased from 11.4 to 18.4 N⋅m,the LOI value increased from 24.3%for PVC-FRP-0%to 33.1%for PVC-FRP-20.The THR value diminished from 39 MJ/m^(2)(pertaining to PVC-FRC-0)to 22 MJ/m^(2)Tg increased from 23°C to 47°C,the weight loss of plasticized PVC blends significantly reduced from 22.6%to 2.8%in leaching tests.The study provided a new way to prepare flame retardant plasticizer using rubber seed oil as raw material.
基金This study was supported by the financial support of Natural Science Research Projects in Higher Education Institutions in Jiangsu Province(No.18KJD430002).
文摘To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously.
基金funded by the Scarce and Quality Economic Forest Engineering Technology Research Center(2022GCZX002)the Key Lab.of Biomass Energy and Material,Jiangsu Province(Grant No.JSBEM-S-202305).
文摘Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials.
基金Scientific and Technological Project of Hubei Province(No.2002AA105A01)
文摘Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.
基金Project(50378062) supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100) supported by the Natural Science Foundation of Tianjin City,China
文摘Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.
基金The project supported by the Natural Science Foundation of Shanxi Province ( No. 2001H18) and the Research Foundation of Shanxi Province for Abroad Returnee (No. 200177)
文摘To enhance the blood compatibility of Polyvinyl Chloride (PVC) film, the film was modified by SO2/O2 gas plasma treatment. The effect of surface sulfonation of PVC treated by various SO2/O2 gas plasma depended on the volume ratio O2/(SO2 +O2). When the volume ratio was 0.5, the effect of sulfonation was the best. Sulfonic acid groups were specifically and efficiently introduced onto the PVC surface, which was proved by X-ray photoelectron spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transfer Infrared (ATR-FTIR) spectroscopy. The surface microstructure of modified PVC film was studied with scanning electron microscopy (SEM). The antithrombogenicity of the samples was determined by the activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and plasma recalcification time (PRT) tests and platelet adhesion experiment. The results indicated that the antithrombogenicity of modified PVC was improved remarkably.
文摘The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When EDPM and DCP are added to the blends simultaneously, the tensile properties could be improved significantly, especially for the blends with LDPE matrix. For example, incorporation of 10/1 (mass ratio) EPDM/DCP improves the tensile strength of the LDPE/PVC (mass ratio 80/20) blend from 7.9 MPa to 8.5 MPa and the elongation at break from 25% to 503%. Results from selective extraction, phase-contrast microscopy and thermal analysis reveal that the improvement in the tensile properties of the blends with LDPE matrix is principally due to the formation of a fine crosslinking network of the LDPE and EPDM phase. The outstanding modification effect of EPDM is explained by its dual functions: molecular entanglement with LDPE and the enhanced efficiency of DCP in the blends.
基金Project (No. 50538070) supported by the National Natural ScienceFoundation of China
文摘This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but also leads to an additional risk due to the generation of polyvinyl chloride (PVC) combustion gases. A mathematical model is proposed to calculate chloride ingress profiles in fire damaged concrete, so as to explore the service life prediction of the structure. Rapid Chloride Migration (RCM) test was carried out to determine the chloride diffusion coefficients for the application of the mathematical model. Finally, the detected results of a reported case testified to the validity of the mathematical model.
文摘By means of molecular dynamics simulation, the transition of the conformations of polyvinyl chloride during a cooling process from 600 to 300 K was studied. The results show that the amorphous polyvinyl chloride chain experiences the melting state, elastic state and glass state and the conformations can be characterized by the increases of the trans-state of C--C--C--C and the near gauche-state of C--C--C--C1 with the decrease of temperature. It is found that the transition of the conformations is driven mainly by the Coulomb interaction between chain segments.
基金This project is supported by National Natural Science Foundation of China (No. 59773024).
文摘The morphology of polyvinyl chloride/polystyrene (PVC/PS) blend samples with different mass ratios, prepared by means of solution casting and melt mixing, have been successfully examined by electron microprobe analysis (EMP). This experiment was performed in a scanning electron microscope attached to an energy dispersive X-ray analyzer. Differential scanning calorimetry was also used to investigate the phase separation of the blends. The results show that PVC and PS are incompatible and the blends have sea-islands phase structures. Blends prepared via melt mixing have finer phase-dispersion than those prepared via solution casting.
基金Sponsored by the Departmet of Science ad Technology, Government of Heilongjiang Province(Grant No.GC04A407).
文摘The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating.
基金the National Natural Science Foundation of China(21905117)Guangxi Key Laboratory of Chemistry and Engineering of Forest Products(GXFK2203)and the Natural Science Foundation of Jiangsu Province(BK20201128)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the required properties during its processing.However,these two additives easily migrate when samples are obtained by physical mixing of the additives with PVC.This causes the reduction of PVC sample efficacy and the increase in the formation of organic by-products in the radiolysis process.In this work,two kinds of grafted PVC samples(tungoil derivative grafted PVC and Atz grafted PVC,abbreviated as P-GT4 and P-AZ3)were synthesized by chemical grafting of 3-amino-1,2,4-triazole(Atz)and tung-oil derivative on PVC,respectively.These two PVC samples were then blended at different mass ratios to obtain hybrid PVC materials with excellent plasticization,thermal stability and migration resistance ability.Differential scanning calorimetry(DSC),discoloration,Congo red test and thermogravimetric analysis(TGA)showed that when the mass ratio of P-GT4 to P-AZ3 in the mixed PVC resin was 1:3,the resulting P1:3-GT4-AZ3(P4)presented the best plasticization and thermal stability.The kinetics of thermal decomposition showed that the activation energy of P4 was much higher than that of the reference material[PVC/DOTP/CaSt2/ZnSt2,PVC/CZ41 for short]at mass lossα=20%and 80%.In addition,the leaching test showed that P4 material possessed excellent migration resistance ability.
基金Funding Statement:The authors express their gratitude for the financial support from the National Natural Science Foundation of China(32101475)the Yuemu Technology Plan Project(YMKJ202201).
文摘In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis after saponification.In addition,the structure of the target product was confirmed by Fourier transform infrared(FTIR)spectroscopy,nuclear magnetic resonance(NMR)spectroscopy,and Raman spectroscopy.COSOCE was used as plasticizer-modified polyvinyl chloride(PVC)membranes.The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy(SEM).The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements,universal testing machine,thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC).The results revealed that(1)The COSOCE-modified PVC membranes exhibit a good microscopic morphology.Combined with energy-dispersive X-ray spectroscopy(EDS)and contact angle measurement results,the COSOCE-modified PVC membranes are confirmed to be a hydrophilic material.(2)The modified PVC membrane with 60%COSOCE exhibited the best mechanical properties.The tensile strength reached 23.56±2.94 MPa.(3)COSOCE-modified PVC material exhibited better thermal stability,with a loss rate of less than 75%at the end of the first decomposition stage.Compared with that of the dioctyl-phthalate(DOP)-modified PVC membrane,the initial decomposition temperature of PVC was increased by 1.17°C–8.17°C,and the residual rate was increased by 0.67%–5.75%.The carbon–carbon double bond in the COSOCE molecular structure can remove the free radicals generated during the degradation of PVC material and slow down the decomposition rate of PVC.In addition,the double bond can be cross-linked partially with the PVC molecular chain containing the conjugated polyene structure,thereby increasing the movement resistance of the PVC molecular chain segment.Hence,COSOCE can replace DOP as a PVC plasticizer.
基金supported by the National Natural Science Foundation of China(21991103,21991104,22008074,22378117)the Fundamental Research Funds for the Central Universities。
文摘Nowadays,the chemical recycling is applied for only 1%of total waste plastics,largely due to contaminants in plastic waste and difficulty in product control.As the major contaminant,polyvinyl chloride(PVC)often forms corrosive hydrogen chloride(HCl)during the chemical recycling,which may cause severe catalyst deactivation and equipment damage.However,the investigation on catalytic pyrolysis(the major route for plastics chemical recycling)of the PVC containing mixed plastics has been rarely reported.Here,catalytic co-pyrolysis of PVC and polyethylene(PE)was studied over an aromatization catalyst,Pt/ZSM-5,since the basic building block aromatics are desired products from plastics chemical recycling.The poisoning effect of PVC vapor on the catalyst stability was explored by collective efforts of thorough product analysis and catalyst characterization.It was found that the HCl evolving from PVC has an autocatalytic effect that promotes the scission of dehydrochlorinated PVC,resulting in the high yield of benzene and acetylene from PVC.On the other hand,the presence of PVC suppressed the aromatics formation from PE,largely due to the poisoning effect of PVC-derived HCl on the Pt/ZSM-5.The deactivation is irreversible as evidenced by the decreased zeolite crystallinity and the loss of strong acid sites that are key to the aromatization,possibly due to the removal of framework Al upon the interaction with HCl.The modification with octadecylphosphonic acid only slightly alleviated the PVC poisoning effect.The insights on the PVC poisoning of zeolite catalysts provided in this work may guide the process design of chemical recycling of PVC containing waste plastics.
基金the National Natural Science Foundation of China(Nos.52170100 and U21A2036)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110257)the Shenzhen Science and Innovation Commission(No.JCYJ20200109113006046).
文摘Nanoplasctics(NPs),which are very small in particle size,exert toxic effect to organisms.Additionally,compared to original NPs,photodegraded NPs would pose higher toxicity.This is because their relatively higher specific surface areas and the presence of additives which can more easily leach.How original NPs and aged NPs affect plant growth has not been widely investigated.This work chose polyvinyl chloride NPs(PVC-NPs)that were subjected to up to 1000 h UV light radiation to explore the impact of PVC-NPs on the growth of pea seedlings(Pisum Sativum L.).The results indicated the existence of PVC-NPs with longer UV light radiation time and higher concentrations had more negative influences on pea seedlings’growth such as germination rate(decreased by 10.6%–22.5%),stem length(decreased by 2.8%–8.1%),dry weight(decreased by 6.3%–7.1%)and fresh weight(decreased by 6.7%–14.8%).It was also noted that photodegraded PVC-NPs resulted in damage to leaf stomata and roots,hindering photosynthesis and absorption of nutrients and hence the decrease in chlorophyll and soluble sugar contents.According to transcriptomic investigation results,the presence of aged PVC-NPs primarily influenced protein processing in endoplasmic reticulum(upregulated metabolic pathway)and phenylpropanoid biosynthesis(downregulated metabolic pathway)of pea seedlings.These results provide an in-depth understanding of how NPs influence the growth of plants.
基金The Fundamental Research Funds for the Central Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX12-0105)the Analysis and Test Fund of Southeast University(No.201226)
文摘Colored layered double hydroxides (LDHs) can be synthesized by introducing colored cations such as Fe^3+ and Cr^3 +, which call be used as thermal stabilizers for polyvinyl chloride (PVC). The yellowish Mg/Fe and bluish Mg/Cr LDHs are prepared by the co-precipitation method. The results show that the MgsCr_ CO3 and Mg3Fe_ CO3 colored layered double hydroxides can stabilize PVC for more than 30 min under the thermal aging temperature of 180 ℃. The preparation can use cheap Mg(OH) 2 instead of MgCl2, which produces a much smaller amount of the by-product NH4Cl. It is known that NH4Cl is a cheap fertilizer that is difficult to sell; therefore, the preparation is much greener and more economic than the one using magnesium salt.
基金Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAD16B01)Tianjin Key Technology Research and Development Support Program (13ZCDNC01900)
基金Supported by the Industrial Foundation(20091041038)
文摘The flow process of unplasticized polyvinyl chloride (U PVC) through the mixing zone of intermeshing counter rotating and co rotating twin screw extruders (TSEs) were numerically simula ted by the finite element method. Three dimensional isothermal flow field of U-PVC in two kinds of TSE was calculated. The mixing performance of the screw elements of the extruders was statistically analyzed by particle tracking method. The dispersive mixing performance was characterized by the mixing index, the logarithm of stretching, and the segregation scale. The distributive mixing per forulance was characterized by the resident time distribution. The results indicate that the counter rotating TSE can build higher pressure and generate higher axial velocity and shear rate, whereas the co rotating TSE has better performance in dispersive and distributive mixing.
基金Project supported by the National Natural Science Foundation of China (Nos. 10672095 and 11072137)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are carried out at 63 ℃ with a small constant stress by a dynamic mechanical analyzer (DMA). The Struik-Kohlrausch (SK) formula and Struik shifting methods are used to describe these creep data for various physical aging time. A new phenomenological model based on the multiple relaxation mechanisms of an amorphous polymer is developed to quantitatively characterize the SK parameters (the initial creep compliance, the characteristic retardation time, and the shape factor) determined by the aging time. It is shown that the momentary creep compliance curve of the PVC at 63℃ can be very well fitted by the SK formula for each aging time. However, the SK parameters for the creep curves are not constant during the aging process at the elevated temperatures, and the evolution of these parameters and the creep rate versus aging time curves at the double logarithmic coordinafes have shown a nonlinear phenomenon. Moreover, the creep master curves obtained by the superposition with the Struik shifting methods are unsatisfactory in such a case. Finally, the predicted results calculated from the present model incorporating with the SK formula are in excellent agreement with the creep experimental data for the PVC isothermally aged at the temperature relatively close to the glass transition temperature.