针对常用混合动力汽车(Hybrid electric vehicle, HEV)中锂离子电池在功率波动较大时难以满足需求,以及单个驱动周期内HEV燃油能耗大且能量不能很好回收等问题,研究采用锂离子电池和超级电容器混合储能系统(Lithium-ion battery and sup...针对常用混合动力汽车(Hybrid electric vehicle, HEV)中锂离子电池在功率波动较大时难以满足需求,以及单个驱动周期内HEV燃油能耗大且能量不能很好回收等问题,研究采用锂离子电池和超级电容器混合储能系统(Lithium-ion battery and super-capacitor hybrid energy storage system, Li-SC HESS)与内燃机共同驱动HEV运行.结合比例积分粒子群优化算法(Particle swarm optimization-proportion integration, PSO-PI)控制器和Li-SC HESS内部功率限制管理办法,提出一种改进的基于庞特里亚金极小值原理(Pontryagin s minimum principle, PMP)算法的HEV能量优化控制策略,通过ADVISOR软件建立HEV整车仿真模型,验证该方法的有效性与可行性.仿真结果表明,该能量优化控制策略提高了HEV跟踪整车燃油能耗最小轨迹的实时性,节能减排比改进前提高了1.6%~2%,功率波动时减少了锂离子电池的出力,进而改善了混合储能系统性能,对电动汽车关键技术的后续研究意义重大.展开更多
根据柴油发动机台架试验结果,分析排气背压对发动机性能的影响,在设计插电式柴电混合动力汽车(plug-in hybrid electric vehicle,PHEV)控制策略时考虑排气背压对油耗与排放的影响因素.以排气背压和蓄电池荷电状态为状态变量,利用庞特里...根据柴油发动机台架试验结果,分析排气背压对发动机性能的影响,在设计插电式柴电混合动力汽车(plug-in hybrid electric vehicle,PHEV)控制策略时考虑排气背压对油耗与排放的影响因素.以排气背压和蓄电池荷电状态为状态变量,利用庞特里亚金极小值原理,求解以插电式混合动力汽车油耗与颗粒物排放量的多目标泛函,从而得到整车油耗与排放综合最优控制策略.在MATLAB/Simulink仿真平台下建立了包含柴油颗粒过滤器(diesel particle filter,DPF)压力损失和捕集效率模型的整车动力学模型,对上述所得最优控制策略进行验证,并与二阶段(charge-depleting and charge-sustaining,CD–CS)控制策略和无排气背压状态最优控制策略进行对比.仿真结果表明,本文建立的最优控制策略相对于其它两种控制策略均能明显降低排气背压升高对发动机性能的影响,有效地改善了整车燃油经济性和排放性.最后通过台架试验对所提出的最优控制策略的有效性进行验证,结果表明,采用该控制策略优化后的等效燃油消耗量与颗粒物(particulate matter,PM)排放量分别降低了9.68%和32%.展开更多
文摘根据柴油发动机台架试验结果,分析排气背压对发动机性能的影响,在设计插电式柴电混合动力汽车(plug-in hybrid electric vehicle,PHEV)控制策略时考虑排气背压对油耗与排放的影响因素.以排气背压和蓄电池荷电状态为状态变量,利用庞特里亚金极小值原理,求解以插电式混合动力汽车油耗与颗粒物排放量的多目标泛函,从而得到整车油耗与排放综合最优控制策略.在MATLAB/Simulink仿真平台下建立了包含柴油颗粒过滤器(diesel particle filter,DPF)压力损失和捕集效率模型的整车动力学模型,对上述所得最优控制策略进行验证,并与二阶段(charge-depleting and charge-sustaining,CD–CS)控制策略和无排气背压状态最优控制策略进行对比.仿真结果表明,本文建立的最优控制策略相对于其它两种控制策略均能明显降低排气背压升高对发动机性能的影响,有效地改善了整车燃油经济性和排放性.最后通过台架试验对所提出的最优控制策略的有效性进行验证,结果表明,采用该控制策略优化后的等效燃油消耗量与颗粒物(particulate matter,PM)排放量分别降低了9.68%和32%.
文摘为解决燃料电池混合动力公交车中基于优化的能量管理策略难以实车应用的问题,在分析燃料电池公交车(Fuel cell hybrid bus,FCHB)行驶路线的固定性和片段性的基础上,提出了一种基于SOM-K-means(Self-organized mapping K-means)工况识别的能量管理策略。首先,根据公交车站点将行驶路线划分为多个行驶片段,在车辆停站时,运用SOM-K-means二阶聚类模型完成工况识别,获取车辆下一行驶片段的识别协态变量;当车辆在下一个行驶片段运行时,运用识别协态变量完成基于庞特里亚金极值原理(Pontryagin s maximum principle,PMP)求解的能量管理策略的实时应用。其次,建立基于公交车实际运行数据的仿真实验,最后建立硬件在环实验,将所提出的策略移植入整车控制器(Vehicle control unit,VCU)中进行实验。实验结果表明,与基于规则的能量管理策略相比,本研究提出的能量管理策略降低了19.77%的平均等效氢气消耗。且该策略在VCU中每一步的计算时间大约为30 ms,计算结果与仿真结果完全一致,满足车辆对能量管理策略的时效性和准确性的要求。