This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant tran...This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, k-ε, k- w, and k- w, were used to close the quasi three-dimensional hydrodynamic model. The k- w model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.展开更多
Ocean Drilling Program (ODP) Site 807A was recovered from the Ontong-Java plateau, western equatorial Pacific. Quantitative analysis of planktonic foraminifera, combined with oxygen and carbon isotope data, reveals th...Ocean Drilling Program (ODP) Site 807A was recovered from the Ontong-Java plateau, western equatorial Pacific. Quantitative analysis of planktonic foraminifera, combined with oxygen and carbon isotope data, reveals the glacial-interglacial variations of sea-surface temperature and the upper water vertical structure in this region during the late Quaternary. Our results indicate that since 530 ka sea-surface temperature (SST) and the depth of thermocline (DOT) have changed significantly in the western Pacific warm pool (WPWP). The average glacial-interglacial annual SST difference was up to 4.2 ℃, and the DOT fluctuations could exceed more than 100 m, further suggesting the instability of the WPWP. The spectral analyses of SST and DOT reveal two dominating cyclicities—the typical 100 ka cycle and the semi-precessional cycle, which is significant in the tropical spectrum, indicating that late Quaternary paleoceanographic changes in the study area were influenced not only by a high latitude forcing but also by tropic-driving factors.展开更多
基金supported by FAPESP (Foundation for Supporting Research in So Paulo State), Brazil, of the PIPE Project (Grant No. 2006/56475-3)
文摘This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, k-ε, k- w, and k- w, were used to close the quasi three-dimensional hydrodynamic model. The k- w model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.
文摘Ocean Drilling Program (ODP) Site 807A was recovered from the Ontong-Java plateau, western equatorial Pacific. Quantitative analysis of planktonic foraminifera, combined with oxygen and carbon isotope data, reveals the glacial-interglacial variations of sea-surface temperature and the upper water vertical structure in this region during the late Quaternary. Our results indicate that since 530 ka sea-surface temperature (SST) and the depth of thermocline (DOT) have changed significantly in the western Pacific warm pool (WPWP). The average glacial-interglacial annual SST difference was up to 4.2 ℃, and the DOT fluctuations could exceed more than 100 m, further suggesting the instability of the WPWP. The spectral analyses of SST and DOT reveal two dominating cyclicities—the typical 100 ka cycle and the semi-precessional cycle, which is significant in the tropical spectrum, indicating that late Quaternary paleoceanographic changes in the study area were influenced not only by a high latitude forcing but also by tropic-driving factors.