电力安全标志牌检测可以识别监控区域内的警示信息,是智能电力安全作业管控系统的重要组成部分。为提高复杂电力场景下安全标志牌的检测精度,提出了一种改进YOLOv2的电力安全标志牌检测方法。在YOLOv2的基础上,通过增加预测层分辨率提...电力安全标志牌检测可以识别监控区域内的警示信息,是智能电力安全作业管控系统的重要组成部分。为提高复杂电力场景下安全标志牌的检测精度,提出了一种改进YOLOv2的电力安全标志牌检测方法。在YOLOv2的基础上,通过增加预测层分辨率提升网络对小目标的预测能力。另外,引入索引池化机制,利用池化掩码限制无用信息的引入,以提高网络分类识别的精确度。实验结果表明,改进后的检测网络在电力标志牌测试集上的平均精度均值(Mean Average Precision,mAP)达到了75.2%,比YOLOv2提高了3.2%。展开更多
目的随着自动驾驶和辅助驾驶的快速发展,交通标志识别研究变得越来越重要。但是现阶段交通标志识别算法对交通标志识别的精度较低,尤其在面对目标背景较为复杂、光照不足和小目标交通标志的场景时,更加容易出现错检和漏检情况。针对以...目的随着自动驾驶和辅助驾驶的快速发展,交通标志识别研究变得越来越重要。但是现阶段交通标志识别算法对交通标志识别的精度较低,尤其在面对目标背景较为复杂、光照不足和小目标交通标志的场景时,更加容易出现错检和漏检情况。针对以上问题,提出了一种改进YOLOv7(you only look once version 7)的交通标志识别模型。方法首先,采用空间金字塔池化快速跨级部分连接(spatial pyramid pooling fast cross stage partial concat,SPPFCSPC)方法,替换YOLOv7算法使用的空间金字塔池化跨级部分连接(spatial pyramid pooling cross stage partial concat,SPPCSPC)方法,提高算法的特征提取能力。其次,采用加权双向特征金字塔网络(bi-directional feature pyra⁃mid network,BiFPN),增强算法的多尺度特征融合能力。接着,采用一种新的框间距离度量的归一化Wasserstein距离(normalized Wasserstein distance,NWD)方法,解决传统的IoU(intersection over union)度量对小目标交通标志检测过于敏感的问题。最后,使用特征内容的感知重组(content-aware reassembly of feature,CARAFE)算子,通过输入的特征,自适应生成上采样内核,有效地增加模型的感受域,更好地利用目标周边的信息,减少交通标志错检和漏检情况。结果实验结果表明,在减少算法参数量的基础上,改进算法在TT100K交通标志数据集上的mAP@0.5和mAP@0.5∶0.9值分别达到了92.50%和72.21%,较原始的YOLOv7算法分别提高了3.24%和1.83%。同时,在具有小目标特性的CCTSDB交通标志数据集和整理的国外交通标志数据集上验证了模型改进的有效性。结论通过实验验证和主客观评价,证明了本文改进算法的可行性,能够有效地对多种环境下的小目标交通标志进行识别,并在降低算法参数量的前提下,进一步提高了YOLOv7算法对交通标志识别的平均精度。展开更多
文摘电力安全标志牌检测可以识别监控区域内的警示信息,是智能电力安全作业管控系统的重要组成部分。为提高复杂电力场景下安全标志牌的检测精度,提出了一种改进YOLOv2的电力安全标志牌检测方法。在YOLOv2的基础上,通过增加预测层分辨率提升网络对小目标的预测能力。另外,引入索引池化机制,利用池化掩码限制无用信息的引入,以提高网络分类识别的精确度。实验结果表明,改进后的检测网络在电力标志牌测试集上的平均精度均值(Mean Average Precision,mAP)达到了75.2%,比YOLOv2提高了3.2%。
文摘目的随着自动驾驶和辅助驾驶的快速发展,交通标志识别研究变得越来越重要。但是现阶段交通标志识别算法对交通标志识别的精度较低,尤其在面对目标背景较为复杂、光照不足和小目标交通标志的场景时,更加容易出现错检和漏检情况。针对以上问题,提出了一种改进YOLOv7(you only look once version 7)的交通标志识别模型。方法首先,采用空间金字塔池化快速跨级部分连接(spatial pyramid pooling fast cross stage partial concat,SPPFCSPC)方法,替换YOLOv7算法使用的空间金字塔池化跨级部分连接(spatial pyramid pooling cross stage partial concat,SPPCSPC)方法,提高算法的特征提取能力。其次,采用加权双向特征金字塔网络(bi-directional feature pyra⁃mid network,BiFPN),增强算法的多尺度特征融合能力。接着,采用一种新的框间距离度量的归一化Wasserstein距离(normalized Wasserstein distance,NWD)方法,解决传统的IoU(intersection over union)度量对小目标交通标志检测过于敏感的问题。最后,使用特征内容的感知重组(content-aware reassembly of feature,CARAFE)算子,通过输入的特征,自适应生成上采样内核,有效地增加模型的感受域,更好地利用目标周边的信息,减少交通标志错检和漏检情况。结果实验结果表明,在减少算法参数量的基础上,改进算法在TT100K交通标志数据集上的mAP@0.5和mAP@0.5∶0.9值分别达到了92.50%和72.21%,较原始的YOLOv7算法分别提高了3.24%和1.83%。同时,在具有小目标特性的CCTSDB交通标志数据集和整理的国外交通标志数据集上验证了模型改进的有效性。结论通过实验验证和主客观评价,证明了本文改进算法的可行性,能够有效地对多种环境下的小目标交通标志进行识别,并在降低算法参数量的前提下,进一步提高了YOLOv7算法对交通标志识别的平均精度。