Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical prope...Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution.展开更多
An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm ...An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm × 4.5 mm each, equally spaced 2 or 10 mm apart, were sintered in one batch at 620 °C for 40 min in a tube furnace. The pore distribution in the selected cross section of sintered samples was found to be dependent on the sample separation distance and the distance from the cross section examined to the sample end. A three-dimensional (3D) CFD model was developed to investigate the nitrogen gas behavior near each sintering surface of the three samples during isothermal sintering. The variation in porosity in the cross section of each sintered sample along sample length was found to be closely related to the nitrogen gas flow field near the sintering surfaces.展开更多
The thermal conductivity values of ordinary concrete can be adjusted to those prescribed in constructions by entraining air bubbles to reduce the density of concrete in order to achieve good thermal insulation. This p...The thermal conductivity values of ordinary concrete can be adjusted to those prescribed in constructions by entraining air bubbles to reduce the density of concrete in order to achieve good thermal insulation. This paper concerns the analysis of air bubble distribution in concrete obtained by micro X-ray μCT (computed tomography) and correlates it with its thermal conductivity (k). The samples were prepared of ordinary concrete varying the density by air-entraining additives, ranging between 2,277 kg/m3 and 1,779 kg/m3, aiming to correlate the mechanical properties and k with the characteristics of the bubble distribution. The results show that air-entrainment leads to viable use of this material as sealer to achieve good thermal insulation, and it can be adjusted, but there seems to be a limit to air entraining. By analysis of the μCT images, it was possible to correlate the more quantity of bubbles of smaller diameter with the minor k, in dry or wet state, and to prove that there is a limit in the entrapped air content, and if it is exceeded, the coalescence occurs.展开更多
Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dy...Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.展开更多
In the process of coal seam fracturing with liquid nitrogen(LN_(2)),the change of coal pore structure has an important influence on the efficiency of coalbed methane(CBM)extraction.The nano-scale pore size distributio...In the process of coal seam fracturing with liquid nitrogen(LN_(2)),the change of coal pore structure has an important influence on the efficiency of coalbed methane(CBM)extraction.The nano-scale pore size distribution(PSD)in coal particles before and after freezing with LN_(2) are experimentally studied in this work.Coal samples are collected from four coal mines,where coal and gas outburst accidents have occurred.Small angle X-ray scattering technology(SAXS)and scanning electron microscopy(SEM)are used to study the pore structure changes of coal samples quantitatively and qualitatively.It is found that the scattering intensity of coal samples increases after freezing.The PSD of all samples significantly changes in the range of 0.8–7 nm,showing new pore spaces in 0.8–4 nm and fewer pores in the 4–7 nm range.Both the pore fractal dimension and the radius of gyration of coal samples increase after freezing and are mainly affected by the changes in pores and the anisotropy of the coal matrix.Crack expansion and pore connections are observed in the surface structure of the coal sample using SEM.This study provides a better understanding of the nano-scale mechanism of coal seam fracturing with LN_(2) for the prevention of coal and gas outbursts.展开更多
The acoustic wave velocity varies with fluid saturation and pore-fluid distribution. We use a P-wave source and the staggered grid finite-difference method, with second-order accuracy in time and eighth-order accuracy...The acoustic wave velocity varies with fluid saturation and pore-fluid distribution. We use a P-wave source and the staggered grid finite-difference method, with second-order accuracy in time and eighth-order accuracy in space, to simulate the acoustic wave field in a fractured medium that is saturated with a two-phase pore fluid (gas & water). Further, we analyze the variation of acoustic wave velocity with saturation for different pore-fluid distribution modes. The numerical simulation method is simple and yields accurate results.展开更多
To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties ...To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties of the porous Ti were explored via room temperature compressive tests. The pore sizes and shapes are uniform throughout the specimens with porosities ranging from 36% to 63%. The compression strength and the elastic modulus are in the range from 94.05 to 468.57 MPa and 2.662 to 18 GPa, respectively. It is worth noting that the relationship between the compressive strength and the porosities is completely linear relation beyond the effect of pore size distributions on the mechanical properties. The value of the constant C achieved from the Gibson-Ashby model suggests that the pore sizes affect the yield strength of the porous Ti and the values of density exponent (n) for porous Ti with two different pore sizes are higher than 2, which suggests that the deformation mode of the porous Ti with a porosity ranging from 36% to 63% is mainly buckling of the cell struts.展开更多
The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot pro...The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot provided information on the pore size distribution(PSD) of a sample, which may be used to monitor the effect of activation conditions in activation processes.展开更多
The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The fi...The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The first member of Eocene Shahejie Formation(Esl)sandstone is classified as feldspathic litharenite and lithic arkose.The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Esl member of Shahejie Formation.The techniques including thin-section petrography,mercury injection capillary pressure(MICP),scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular,intragranular,dissolution and fracture pores.Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir.Pore size and pore throat size distribution are acquired from mercury injection test.Porosity values range from 0.5%to 30%,and permeability ranges 0.006-7000 mD.Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to>4μm and 1 nm to 1.60μm,respectively,by MICP analysis.The mineral composition also plays an important role in protecting the pores with pressure from failure.Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability,whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected,and so they consist of high porosity with low permeability.展开更多
Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnec...Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.展开更多
The solubilization of small molecules from coal by solvent extraction and the resulting effects on the pore distribution of a low rank coal were studied. Samples were extracted, in succession, with petroleum ether and...The solubilization of small molecules from coal by solvent extraction and the resulting effects on the pore distribution of a low rank coal were studied. Samples were extracted, in succession, with petroleum ether and with CS2. Extract and residue fractions collected during the solubilization process were analyzed by FTIR and by surface area and porosimetry. The results show that an obvious inflection point exists that allows separating the dissolution sequence into stages. Small molecules are first extracted from the free state, then molecules trapped in micropores are extracted and, finally, molecules trapped in the coal-matrix network are extracted. This is indicated from the extraction yield curves. Chain-like carbonyl compounds, -OH (or -NH) containing compounds that are hydrogen bonded and phenolics dominate the petroleum ether extracts. Chain-like carbonyl components and ether compounds (aliphatic ethers and aromatic ethers) dominate the CS2 extracts. A solvent dissolution mechanism and the effect of small molecule extraction on the pore structure are put forward. Diffusion, dissolution, pore opening, pore shrinking or even collapsing caused by swelling, creating of new micropores, pore opening and, finally, colloidallization of some micropores occurs. In the later stages of the extraction the internal structure of the coal is colloidallized due to swelling and the pore number or volume is greatly reduced.展开更多
The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious ...The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious material ratio ( W/C) of 0. 30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days , the compressive strength of the concrete with metakaolin and silica fume replacement increases. A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.展开更多
Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.T...Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.展开更多
We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influen...We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influence of superplasticizers(SPs)on early-age drying shrinkage.In our experiments,it is found that the addition of three types of SPs leads to a significant increase in the early-age drying shrinkage of cement paste,and drying shrinkage increases with the dosage of SPs.Based on the results above,we further studied the mechanism of the effects of SPs on the early-age drying shrinkage of cement paste by PSD and water loss,which are two components of r_s.The experimental results indicate that r_s can be a better index for the early-age drying shrinkage of cement-based materials with SPs than a single factor.In addition,the effects of SPs on other factors such as hydration degree and elastic modulus were also investigated and discussed.展开更多
Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused ...Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.展开更多
A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and...A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and α-Al2O3 micropowders (d50=1.754 μm) as starting materials. Cold mechanical strength and pore size distribution of the castables specimens after heat treatment at 110,1 100 and 1 500 ℃ were tested,respectively. The quantitative relationship between strength and apparent porosity,and that between strength and median pore diameter were verified by Atzeni equation. The correlation between interval of pore size and mechanical strength of specimens was also studied by means of gray relational theory. The results show that:(1) the pore size distribution of castables is strongly influenced by both micropowders filling and matrix sintering; the addition of micropowders decreases median pore diameter while the sintering process increases it; (2) when adding a constant correction term,Atzeni equation can substantially describe the quantitative relationship between median pore diameter and strength of castables specimens after heat treatment at the same temperature; the significant differences of the gray relational degree between the interval of pore size and castables strength are characterized; it is also found that for the same interval of pore size,the gray relational degree isaffected by the heat treatment temperature; the pore size interval 〈0.5 μm has the highest gray relational degree with the strength at 110-1 500 ℃.展开更多
An unsteady model of melting heat transfer in metal foam filled with paraffin is developed and numerically analyzed. In the model, the pore distribution of metal foam is described by Sierpinski fractal. By this fracta...An unsteady model of melting heat transfer in metal foam filled with paraffin is developed and numerically analyzed. In the model, the pore distribution of metal foam is described by Sierpinski fractal. By this fractal description,six types of metal foams with the identical porosity, different pore distributions are reconstructed. The effect of pores distribution on the heat transfer performance of the paraffin/copper foam composite is emphatically investigated. The solid-liquid distribution, the evolution of the melting front, the dynamic temperature response and the total melting time in these six fractal structures are all examined and analyzed. The results indicate that, the pores distribution has a significant impact on the melting heat transfer of the paraffin in the metal foam. When the first-level fractal pore is located near the heat source boundary, the thermal hysteresis effect of the paraffin on the solid matrix heat transfer is more significant. If the cross-sectional length of the pores along the normal direction of heat transfer is larger, the heat transfer barrier of the solid matrix is greater. It is favorable for the paraffin heat transfer when the pores specific surface area is larger.展开更多
The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characte...The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.展开更多
In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrin...In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrinkage curve(SC)are used as the input parameters.The w-SWCC defines the relationship between the gravimetric water content and soil suction.The SC illustrates the variation of the void ratio with respect to different water contents.10 points in the w-SWCC were selected as initial conditions.By adopting different void ratios,a group of soil-water characteristic curve in the form of the degree of saturation(S-SWCC)can be obtained.Based on Kelvin's capillary law,the S-SWCCs can be converted into a group of PSDFs.In the group of PSDFs,each PSDF represents the geometric pore space in soil corresponding to a given void ratio.From the proposed methodology,it is observed that a bimodal PSDF can be gradually changed into a unimodal PSDF when the soil is compressed.The Chataignier clay is selected as the verification and it shows that the simulation results agree well with the measured results from the mercury intrusion porosimetry(MIP)test.In addition,the discrepancies between both direct measurement data using the MIP test and the indirect estimated results from the proposed method are also discussed.展开更多
Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are consider...Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are considered through Water Vapor Adsorption Isotherm(WVAI)and Retention Curve(RC)functions which are constitutive laws characterizing water activity within a porous medium.The objective of this paper is to present a water vapor adsorption and retention models built from multimodal Pore Size Distribution Function(PSDF)and to see how its parameters modify moisture storage for hygroscopic and near saturation ranges.The microstructure of the porous medium is represented statistically by a bundle of tortuous parallel pores through its PSDF.Firstly,the influence of contact angle and temperature on storage properties were investigated.Secondly,a parametric study was performed to see the influence of the PSDF shape on storage properties.Three cases were studied considering the number of modalities,the weight of each modality and the dispersion around mean radius.Finally,as a validation,the proposed model for WVAI were compared to existing model from literature showing a good agreement.This study showed that the proposed models are capable to reproduce various shapes of storage functions.It also highlighted the link between microstructure and adsorption-retention phenomena.展开更多
基金the Fundamental Research Funds for the Central Universities,China(Grant No.B210203032)the National Natural Science Foundation of China(Grant No.52279097)the Green and Blue Project of Jiangsu Province,China.
文摘Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution.
基金supported by Ampal Inc., a member of the United States Metal Powders Group, through the CAST CRC, a Cooperative Research Centre established by the Australian Commonwealth Government
文摘An experimental and computational fluid dynamics (CFD) numerical study of the sintering of an Al?7Zn?2.5Mg?1Cu alloy in flowing nitrogen was presented. Three rectangular bars with dimensions of 56 mm × 10 mm × 4.5 mm each, equally spaced 2 or 10 mm apart, were sintered in one batch at 620 °C for 40 min in a tube furnace. The pore distribution in the selected cross section of sintered samples was found to be dependent on the sample separation distance and the distance from the cross section examined to the sample end. A three-dimensional (3D) CFD model was developed to investigate the nitrogen gas behavior near each sintering surface of the three samples during isothermal sintering. The variation in porosity in the cross section of each sintered sample along sample length was found to be closely related to the nitrogen gas flow field near the sintering surfaces.
文摘The thermal conductivity values of ordinary concrete can be adjusted to those prescribed in constructions by entraining air bubbles to reduce the density of concrete in order to achieve good thermal insulation. This paper concerns the analysis of air bubble distribution in concrete obtained by micro X-ray μCT (computed tomography) and correlates it with its thermal conductivity (k). The samples were prepared of ordinary concrete varying the density by air-entraining additives, ranging between 2,277 kg/m3 and 1,779 kg/m3, aiming to correlate the mechanical properties and k with the characteristics of the bubble distribution. The results show that air-entrainment leads to viable use of this material as sealer to achieve good thermal insulation, and it can be adjusted, but there seems to be a limit to air entraining. By analysis of the μCT images, it was possible to correlate the more quantity of bubbles of smaller diameter with the minor k, in dry or wet state, and to prove that there is a limit in the entrapped air content, and if it is exceeded, the coalescence occurs.
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)FAPESP(2014/02163-7,2017/11958-1,2018/20756-6)the support from Shell。
文摘Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.
基金supported by the National Natural Science Foundation of China(grant number 52174183)the China Scholarship Council(grant number 202008210389)。
文摘In the process of coal seam fracturing with liquid nitrogen(LN_(2)),the change of coal pore structure has an important influence on the efficiency of coalbed methane(CBM)extraction.The nano-scale pore size distribution(PSD)in coal particles before and after freezing with LN_(2) are experimentally studied in this work.Coal samples are collected from four coal mines,where coal and gas outburst accidents have occurred.Small angle X-ray scattering technology(SAXS)and scanning electron microscopy(SEM)are used to study the pore structure changes of coal samples quantitatively and qualitatively.It is found that the scattering intensity of coal samples increases after freezing.The PSD of all samples significantly changes in the range of 0.8–7 nm,showing new pore spaces in 0.8–4 nm and fewer pores in the 4–7 nm range.Both the pore fractal dimension and the radius of gyration of coal samples increase after freezing and are mainly affected by the changes in pores and the anisotropy of the coal matrix.Crack expansion and pore connections are observed in the surface structure of the coal sample using SEM.This study provides a better understanding of the nano-scale mechanism of coal seam fracturing with LN_(2) for the prevention of coal and gas outbursts.
基金This research was supported by the National Natural Science Foundation of China (No. 51134004).
文摘The acoustic wave velocity varies with fluid saturation and pore-fluid distribution. We use a P-wave source and the staggered grid finite-difference method, with second-order accuracy in time and eighth-order accuracy in space, to simulate the acoustic wave field in a fractured medium that is saturated with a two-phase pore fluid (gas & water). Further, we analyze the variation of acoustic wave velocity with saturation for different pore-fluid distribution modes. The numerical simulation method is simple and yields accurate results.
基金Project (2012CB619100) supported by the National Basic Research Program of China
文摘To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties of the porous Ti were explored via room temperature compressive tests. The pore sizes and shapes are uniform throughout the specimens with porosities ranging from 36% to 63%. The compression strength and the elastic modulus are in the range from 94.05 to 468.57 MPa and 2.662 to 18 GPa, respectively. It is worth noting that the relationship between the compressive strength and the porosities is completely linear relation beyond the effect of pore size distributions on the mechanical properties. The value of the constant C achieved from the Gibson-Ashby model suggests that the pore sizes affect the yield strength of the porous Ti and the values of density exponent (n) for porous Ti with two different pore sizes are higher than 2, which suggests that the deformation mode of the porous Ti with a porosity ranging from 36% to 63% is mainly buckling of the cell struts.
基金Supported by the National Natural Science Foundation of China(No.29936100).
文摘The CO2 adsorption data may show more than one section in the Dubinin-Radushkevich-Kaganer(DRK) plot if samples had been over-activated. Each section in the plot represents a range of pore size. The whole DRK plot provided information on the pore size distribution(PSD) of a sample, which may be used to monitor the effect of activation conditions in activation processes.
基金funded by the Natural Science Foundation of China Project(No.41602138)National Science and Technology Special Grant(No.2016ZX05006007)+1 种基金China Postdoctoral Science Foundation-funded Project(2015M580617,2017T100524)the Fundamental Research Funds for the Central Universities(15CX08001A)
文摘The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The first member of Eocene Shahejie Formation(Esl)sandstone is classified as feldspathic litharenite and lithic arkose.The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Esl member of Shahejie Formation.The techniques including thin-section petrography,mercury injection capillary pressure(MICP),scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular,intragranular,dissolution and fracture pores.Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir.Pore size and pore throat size distribution are acquired from mercury injection test.Porosity values range from 0.5%to 30%,and permeability ranges 0.006-7000 mD.Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to>4μm and 1 nm to 1.60μm,respectively,by MICP analysis.The mineral composition also plays an important role in protecting the pores with pressure from failure.Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability,whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected,and so they consist of high porosity with low permeability.
基金supported by grants from Shenzhen Key Medical Subject(No.SZXK023)Shenzhen“SanMing”Project of Medicine(No.SZSM201612092)+3 种基金Shenzhen Research and Development Projects(No.JCYJ20170307111755218)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011290)National Key Research and Development Program of China(No.2016YFC1102103)China Postdoctoral Science Foundation(No.2020M672756)
文摘Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.
基金Projects 50474066 and 50874108 supported by the National Natural Science Foundation of China107055 by the Scientific Research Key Project of Ministry of Education+1 种基金BK20070380 by the Natural Science Foundation of Jiangsu ProvinceCPEUKF06-03 and CPEUKF08-06 by the Open Fund of Key Laboratory of Coal Process and Clean Utilization of Ministry of Education,China
文摘The solubilization of small molecules from coal by solvent extraction and the resulting effects on the pore distribution of a low rank coal were studied. Samples were extracted, in succession, with petroleum ether and with CS2. Extract and residue fractions collected during the solubilization process were analyzed by FTIR and by surface area and porosimetry. The results show that an obvious inflection point exists that allows separating the dissolution sequence into stages. Small molecules are first extracted from the free state, then molecules trapped in micropores are extracted and, finally, molecules trapped in the coal-matrix network are extracted. This is indicated from the extraction yield curves. Chain-like carbonyl compounds, -OH (or -NH) containing compounds that are hydrogen bonded and phenolics dominate the petroleum ether extracts. Chain-like carbonyl components and ether compounds (aliphatic ethers and aromatic ethers) dominate the CS2 extracts. A solvent dissolution mechanism and the effect of small molecule extraction on the pore structure are put forward. Diffusion, dissolution, pore opening, pore shrinking or even collapsing caused by swelling, creating of new micropores, pore opening and, finally, colloidallization of some micropores occurs. In the later stages of the extraction the internal structure of the coal is colloidallized due to swelling and the pore number or volume is greatly reduced.
基金Funded by the Research Grants Council of the Hong Kong SAR Government Project(31.37. A212)
文摘The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5% , 10% and 20% metakaolin were prepared at a water / cementitious material ratio ( W/C) of 0. 30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days , the compressive strength of the concrete with metakaolin and silica fume replacement increases. A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0603106)the Youth Program of National Natural Science Foundation of China(Grant No.41802148)the State Key Laboratory of Petroleum Resources and Prospecting(Grant No.2462017YJRC025,Grant No.PRP/indep04-1611)
文摘Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.
基金Funded by the Key Research and Development Program of Zhejiang Province in 2018(No2018C03033-1)。
文摘We introduced a parameter r_s(the radius of the pores where the meniscus forms),which is composed of two factors,i e,water loss and cumulative pore size distribution(PSD),to provide a better explanation of the influence of superplasticizers(SPs)on early-age drying shrinkage.In our experiments,it is found that the addition of three types of SPs leads to a significant increase in the early-age drying shrinkage of cement paste,and drying shrinkage increases with the dosage of SPs.Based on the results above,we further studied the mechanism of the effects of SPs on the early-age drying shrinkage of cement paste by PSD and water loss,which are two components of r_s.The experimental results indicate that r_s can be a better index for the early-age drying shrinkage of cement-based materials with SPs than a single factor.In addition,the effects of SPs on other factors such as hydration degree and elastic modulus were also investigated and discussed.
基金Supported by the National Natural Science Foundation of China(2160060639)the Natural Science Foundation of Jiangsu Province(BK20160984)the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry(ZX15511310002)
文摘Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.
文摘A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and α-Al2O3 micropowders (d50=1.754 μm) as starting materials. Cold mechanical strength and pore size distribution of the castables specimens after heat treatment at 110,1 100 and 1 500 ℃ were tested,respectively. The quantitative relationship between strength and apparent porosity,and that between strength and median pore diameter were verified by Atzeni equation. The correlation between interval of pore size and mechanical strength of specimens was also studied by means of gray relational theory. The results show that:(1) the pore size distribution of castables is strongly influenced by both micropowders filling and matrix sintering; the addition of micropowders decreases median pore diameter while the sintering process increases it; (2) when adding a constant correction term,Atzeni equation can substantially describe the quantitative relationship between median pore diameter and strength of castables specimens after heat treatment at the same temperature; the significant differences of the gray relational degree between the interval of pore size and castables strength are characterized; it is also found that for the same interval of pore size,the gray relational degree isaffected by the heat treatment temperature; the pore size interval 〈0.5 μm has the highest gray relational degree with the strength at 110-1 500 ℃.
基金Supported by the National Natural Science Foundation of China under Grant No.51706101Key Laboratory of Solar Energy Science and Technology Foundation of Jiangsu Province under Grant No.KLSST201704the Fundamental Research Funds for the Central Universities under Grant No.30917011328
文摘An unsteady model of melting heat transfer in metal foam filled with paraffin is developed and numerically analyzed. In the model, the pore distribution of metal foam is described by Sierpinski fractal. By this fractal description,six types of metal foams with the identical porosity, different pore distributions are reconstructed. The effect of pores distribution on the heat transfer performance of the paraffin/copper foam composite is emphatically investigated. The solid-liquid distribution, the evolution of the melting front, the dynamic temperature response and the total melting time in these six fractal structures are all examined and analyzed. The results indicate that, the pores distribution has a significant impact on the melting heat transfer of the paraffin in the metal foam. When the first-level fractal pore is located near the heat source boundary, the thermal hysteresis effect of the paraffin on the solid matrix heat transfer is more significant. If the cross-sectional length of the pores along the normal direction of heat transfer is larger, the heat transfer barrier of the solid matrix is greater. It is favorable for the paraffin heat transfer when the pores specific surface area is larger.
基金financial support from the Youth Science and Technology Innovation Team of Southwest Petroleum University(No.2018CXTD10)the National Natural Science Foundation Project of China(No.51874248 and No.U19B2010).
文摘The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.
文摘In order to obtain an indirect estimation method of the pore size distribution function(PSDF)for a deformable soil,both the soil-water characteristic curve in the form of gravimetric water content(w-SWCC)and the shrinkage curve(SC)are used as the input parameters.The w-SWCC defines the relationship between the gravimetric water content and soil suction.The SC illustrates the variation of the void ratio with respect to different water contents.10 points in the w-SWCC were selected as initial conditions.By adopting different void ratios,a group of soil-water characteristic curve in the form of the degree of saturation(S-SWCC)can be obtained.Based on Kelvin's capillary law,the S-SWCCs can be converted into a group of PSDFs.In the group of PSDFs,each PSDF represents the geometric pore space in soil corresponding to a given void ratio.From the proposed methodology,it is observed that a bimodal PSDF can be gradually changed into a unimodal PSDF when the soil is compressed.The Chataignier clay is selected as the verification and it shows that the simulation results agree well with the measured results from the mercury intrusion porosimetry(MIP)test.In addition,the discrepancies between both direct measurement data using the MIP test and the indirect estimated results from the proposed method are also discussed.
文摘Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials.They account for interaction between solid matrix,liquid water and moist air.They are considered through Water Vapor Adsorption Isotherm(WVAI)and Retention Curve(RC)functions which are constitutive laws characterizing water activity within a porous medium.The objective of this paper is to present a water vapor adsorption and retention models built from multimodal Pore Size Distribution Function(PSDF)and to see how its parameters modify moisture storage for hygroscopic and near saturation ranges.The microstructure of the porous medium is represented statistically by a bundle of tortuous parallel pores through its PSDF.Firstly,the influence of contact angle and temperature on storage properties were investigated.Secondly,a parametric study was performed to see the influence of the PSDF shape on storage properties.Three cases were studied considering the number of modalities,the weight of each modality and the dispersion around mean radius.Finally,as a validation,the proposed model for WVAI were compared to existing model from literature showing a good agreement.This study showed that the proposed models are capable to reproduce various shapes of storage functions.It also highlighted the link between microstructure and adsorption-retention phenomena.