期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Detection of artificial pornographic pictures based on multiple features and tree mode 被引量:3
1
作者 MAO Xing-liang LI Fang-fang +1 位作者 LIU Xi-yao ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1651-1664,共14页
It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this wor... It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this work, we studied how to detect artificial pornographic pictures, especially when they are on social networks. The whole detection process can be divided into two stages: feature selection and picture detection. In the feature selection stage, seven types of features that favour picture detection were selected. In the picture detection stage, three steps were included. 1) In order to alleviate the imbalance in the number of artificial pornographic pictures and normal ones, the training dataset of artificial pornographic pictures was expanded. Therefore, the features which were extracted from the training dataset can also be expanded too. 2) In order to reduce the time of feature extraction, a fast method which extracted features based on the proportionally scaled picture rather than the original one was proposed. 3) Three tree models were compared and a gradient boost decision tree (GBDT) was selected for the final picture detection. Three sets of experimental results show that the proposed method can achieve better recognition precision and drastically reduce the time cost of the method. 展开更多
关键词 multiple feature artificial pornographic pictures picture detection gradient boost decision tree
下载PDF
Improving the precision of the keyword-matching pornographic text filtering method using a hybrid model 被引量:3
2
作者 苏贵洋 李建华 +1 位作者 马颖华 李生红 《Journal of Zhejiang University Science》 EI CSCD 2004年第9期1106-1113,共8页
With the flooding of pornographic information on the Internet, how to keep people away from that offensive information is becoming one of the most important research areas in network information security. Some applica... With the flooding of pornographic information on the Internet, how to keep people away from that offensive information is becoming one of the most important research areas in network information security. Some applications which can block or filter such information are used. Approaches in those systems can be roughly classified into two kinds: metadata based and content based. With the development of distributed technologies, content based filtering technologies will play a more and more important role in filtering systems. Keyword matching is a content based method used widely in harmful text filtering. Experiments to evaluate the recall and precision of the method showed that the precision of the method is not satisfactory, though the recall of the method is rather high. According to the results, a new pornographic text filtering model based on reconfirming is put forward. Experiments showed that the model is practical, has less loss of recall than the single keyword matching method, and has higher precision. 展开更多
关键词 Pornographic text filtering Content based filtering Information filtering Network content security
下载PDF
Learning Association Rules and Tracking the Changing Concepts on Webpages:An Effective Pornographic Websites Filtering Approach
3
作者 Jyh-Jian Sheu 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第1期24-36,共13页
We applied the decision tree algorithm to learn association rules between webpage’s category(pornographic or normal) and the critical features.Based on these rules, we proposed an efficient method of filtering pornog... We applied the decision tree algorithm to learn association rules between webpage’s category(pornographic or normal) and the critical features.Based on these rules, we proposed an efficient method of filtering pornographic webpages with the following major advantages: 1) a weighted window-based technique was proposed to estimate for the condition of concept drift for the keywords found recently in pornographic webpages; 2) checking only contexts of webpages without scanning pictures; 3) an incremental learning mechanism was designed to incrementally update the pornographic keyword database. 展开更多
关键词 Concept drift data mining decision tree pornographic websites filtering
下载PDF
Bag-of-visual-words model for artificial pornographic images recognition
4
作者 李芳芳 罗四伟 +1 位作者 刘熙尧 邹北骥 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1383-1389,共7页
It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in de... It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method. 展开更多
关键词 artificial pornographic image bag-of-words (BoW) speeded-up robust feature (SURF) descriptors visual vocabulary
下载PDF
Fine-Grained Pornographic Image Recognition with Multi-Instance Learning
5
作者 Zhiqiang Wu Bing Xie 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期299-316,共18页
Image has become an essential medium for expressing meaning and disseminating information.Many images are uploaded to the Internet,among which some are pornographic,causing adverse effects on public psychological heal... Image has become an essential medium for expressing meaning and disseminating information.Many images are uploaded to the Internet,among which some are pornographic,causing adverse effects on public psychological health.To create a clean and positive Internet environment,network enforcement agencies need an automatic and efficient pornographic image recognition tool.Previous studies on pornographic images mainly rely on convolutional neural networks(CNN).Because of CNN’s many parameters,they must rely on a large labeled training dataset,which takes work to build.To reduce the effect of the database on the recognition performance of pornographic images,many researchers view pornographic image recognition as a binary classification task.In actual application,when faced with pornographic images of various features,the performance and recognition accuracy of the network model often decrease.In addition,the pornographic content in images usually lies in several small-sized local regions,which are not a large proportion of the image.CNN,this kind of strong supervised learning method,usually cannot automatically focus on the pornographic area of the image,thus affecting the recognition accuracy of pornographic images.This paper established an image dataset with seven classes by crawling pornographic websites and Baidu Image Library.A weakly supervised pornographic image recognition method based on multiple instance learning(MIL)is proposed.The Squeeze and Extraction(SE)module is introduced in the feature extraction to strengthen the critical information and weaken the influence of non-key and useless information on the result of pornographic image recognition.To meet the requirements of the pooling layer operation in Multiple Instance Learning,we introduced the idea of an attention mechanism to weight and average instances.The experimental results show that the proposed method has better accuracy and F1 scores than other methods. 展开更多
关键词 Deep learning multi-instance learning pornographic image multiclassification residual network
下载PDF
Transfer Learning on Deep Neural Networks to Detect Pornography
6
作者 Saleh Albahli 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期701-717,共17页
While the internet has a lot of positive impact on society,there are negative components.Accessible to everyone through online platforms,pornography is,inducing psychological and health related issues among people of ... While the internet has a lot of positive impact on society,there are negative components.Accessible to everyone through online platforms,pornography is,inducing psychological and health related issues among people of all ages.While a difficult task,detecting pornography can be the important step in determining the porn and adult content in a video.In this paper,an architecture is proposed which yielded high scores for both training and testing.This dataset was produced from 190 videos,yielding more than 19 h of videos.The main sources for the content were from YouTube,movies,torrent,and websites that hosts both pornographic and non-pornographic contents.The videos were from different ethnicities and skin color which ensures the models can detect any kind of video.A VGG16,Inception V3 and Resnet 50 models were initially trained to detect these pornographic images but failed to achieve a high testing accuracy with accuracies of 0.49,0.49 and 0.78 respectively.Finally,utilizing transfer learning,a convolutional neural network was designed and yielded an accuracy of 0.98. 展开更多
关键词 Pornographic video detection classification convolutional neural network InceptionV3 Resnet50 VGG16
下载PDF
RESEARCH ON KEY THECHNOLOGIES OF PORNOGRAPHIC IMAGE/VIDEO RECOGNITION IN COMPRESSED DOMAIN
7
作者 Zhao Shiwei Zhuo Li Wang Suyu Shen Lansun 《Journal of Electronics(China)》 2009年第5期687-691,共5页
Pornographic image/video recognition plays a vital role in network information surveillance and management. In this paper, its key techniques, such as skin detection, key frame extraction, and classifier design, etc.,... Pornographic image/video recognition plays a vital role in network information surveillance and management. In this paper, its key techniques, such as skin detection, key frame extraction, and classifier design, etc., are studied in compressed domain. A skin detection method based on data-mining in compressed domain is proposed firstly and achieves the higher detection accuracy as well as higher speed. Then, a cascade scheme of pornographic image recognition based on selective decision tree ensemble is proposed in order to improve both the speed and accuracy of recognition. A pornographic video oriented key frame extraction solution in compressed domain and an approach of pornographic video recognition are discussed respectively in the end. 展开更多
关键词 Pornographic image/video Compressed domain Skin detection Key frame extraction
下载PDF
Joint detection method of pornographic images with skin-like color background
8
作者 唐朝伟 Leng Zhenfeng +2 位作者 Shao Yanqing Tang Hui Zhou Xu 《High Technology Letters》 EI CAS 2012年第2期132-138,共7页
A novel approach is proposed to automatically detect pomographic images with skin-like color background on the Intemet using the locations of human faces and bodies. It has two separate skin-color detection steps: th... A novel approach is proposed to automatically detect pomographic images with skin-like color background on the Intemet using the locations of human faces and bodies. It has two separate skin-color detection steps: the first one is to quickly detect the potential human skin-color regions; and the second one is to use an off-the-shelf face detector to locate a human face and then apply hypothesis testing based on series of assumptions which take into account the face-height ratio, body orientation and modem photograph composition common sense, etc. After that, a template matching method is used to further discriminate normal images or pornographic ones. Experimental results show that the proposed method has high precision and real time speed. 展开更多
关键词 face detection pornographic image skin-like color background skin-color detection template matching
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部