期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nitrogen-and Oxygen-Containing Porous Ultrafine Carbon Nanofiber:A Highly Flexible Electrode Material for Supercapacitor 被引量:4
1
作者 Kai Wei Kyu-Oh Kim +4 位作者 Kyung-Hun Song Chang-Yong Kang Jung soon Lee Mayakrishnan Gopiraman Ick-Soo Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第5期424-431,共8页
Herein, we report a simple and effective preparation of ultrafine CNFs (u-CNFs) with high surface area via electrospinning of two immiscible polymers [polyacrylonitrile (PAN) and poly(methyl methacry- late) (P... Herein, we report a simple and effective preparation of ultrafine CNFs (u-CNFs) with high surface area via electrospinning of two immiscible polymers [polyacrylonitrile (PAN) and poly(methyl methacry- late) (PMMA)] followed by calcination at high temperature in an inert atmosphere. Various electrospinning conditions were optimized in detail. Four different kinds of PAN/PMMA ratios (10/0, 7:3, 5:5 and 3:7) were chosen and found that the PAN/PMMA ratio of 3:7 (PAN/PMMA-3:7) is the optimum one. BET anal- ysis showed the specific surface area of the u-CNFs-3:7 was 46Z57 m2/g with an excellent pore volume (1.15 cms g-l) and an average pore size (9.48 nm): it is about 25 times higher than the conventional CNFs (c-CNFs). TEM and FE-SEM images confirmed the ultrafine structure of the CNFs with a thinner fiber di- ameter of-50 nm. The graphitic nature and atomic arrangement of the u-CNFs were investigated by Raman and XPS analyses. For the supercapacitor application, unlike the common electrode preparation methods, the u-CNFs-3:7 was used without any activation, chemical or mechanical modifications. The u-CNFs- 3:7 showed a better specific capacitance of 86 Fig in 1 mol/L 1-12S04 when compared to pure CNFs. The excellent physicochemical properties make the u-CNFs-3:7 an alternative choice to the existing CNFs for the supercapacitors. 展开更多
关键词 Carbon fiber porosity Electron microscopy Surface analysis Supercapacitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部