Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this...Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and mille. In addition, the forming mechanism of anatase and mille TiO2 porous films was discussed.展开更多
Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface lay...Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface layers is proposed. The static deformation and resonance frequencies of these surface-enhanced sensors with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass are analyzed. It is shown that the sensitivities of these novel cantilever sensors for the static deformation and resonance frequencies can be tuned by the porosity, the size of the pores and the structure of the porous films. For the three kinds of cantilever consisting of solid films, films with aligned cylindrical micro-scale pores, and those with nano-scale pores, the nano-porous one has the highest static and dynamic sensitivities, whereas the solid one has the lowest.展开更多
To study the effect of different deposition temperatures on the optical properties of porous SiC films,single crystal Si was used as the substrate,a layer of anodic aluminum oxide(AAO)film was transferred on the Si su...To study the effect of different deposition temperatures on the optical properties of porous SiC films,single crystal Si was used as the substrate,a layer of anodic aluminum oxide(AAO)film was transferred on the Si substrate by chemical method,and then a layer of SiC was deposited on anodic aluminum oxide(AAO)template to prepare porous fluorescent SiC film by magnetron sputtering.The deposition temperature was ranged from 373 to 873 K.The thickness of the porous SiC film coated on the AAO surface was around 283 nm.It is found that the porous SiC with the deposition temperature of 873 K has the strongest photoluminescence(PL)intensity excited by 375 nm laser.The time-resolved PL spectra prove that the PL is mainly from intrinsic light emitting of SiC.With the optimized process,porous amorphous SiC film may have potential applications in the field of warm white LEDs.展开更多
Designing and fabricating efficient electromagnetic interference(EMI)shielding materials becomes a significant and urgent concern.Hence,a novel ultrathin,flexible,and oxidation-resistant MXene-based graphene(M-rGX)por...Designing and fabricating efficient electromagnetic interference(EMI)shielding materials becomes a significant and urgent concern.Hence,a novel ultrathin,flexible,and oxidation-resistant MXene-based graphene(M-rGX)porous film is successfully fabricated by electrostatic self-assembly between MXene and graphene oxide(GO)nanosheets,and subsequently thermal annealing under hydrogen-argon atmosphere.The rapid breakaway of functional groups on GO and MXene sheets induces formation of porous conductive network in film,thereby facilitating efficient shielding for incident electromagnetic waves.The optimal absolute shielding effectiveness(SSE/t)value of 76,422 dB·cm2·g−1 can be achieved at a thinner thickness of 15μm.More importantly,the effective removal of functional groups on MXene conspicuously improves the oxidation resistance of the film,endowing it with an excellent durability(12 months)in EMI shielding performance.展开更多
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ...The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.展开更多
MXene presents excellent electrical conductivity,abundant surface functional groups and wonderful filmforming performance,but the lamellar layers are prone to self-stacking during film formation,which will reduce the ...MXene presents excellent electrical conductivity,abundant surface functional groups and wonderful filmforming performance,but the lamellar layers are prone to self-stacking during film formation,which will reduce the loss of electromagnetic waves,hinder ion transmission,and limit the effective load of other functional materials.The construction of the porous structure can effectively solve the self-stacking problem of MXene sheets.This article reviews the research progress of MXene porous films for electromagnetic interference(EMI)shielding,lithium/sodium ion batteries,pseudocapacitors,and biomedical science applications.It focuses on the preparation methods of MXene porous films,and discusses the pore-forming mechanism of the porous structure formed by different preparation methods and the internal relationship between the“microstructure-macroscopic performance”of the MXene porous films,points out the key scientific and technical bottlenecks that need to be solved urgently in the preparation and application of the MXene porous films.It is hoped to provide certain guidance for the design,preparation,optimization,industrial application,and development of MXene porous films.展开更多
Lightweight,flexible,and electrically conductive porous films are promising for efficient electromagnetic interference(EMI)shielding.However,the mechanical and electrical properties of porous films are far from optimu...Lightweight,flexible,and electrically conductive porous films are promising for efficient electromagnetic interference(EMI)shielding.However,the mechanical and electrical properties of porous films are far from optimum.Herein,we fabricate mechanically flexible and electrically conductive reduced graphene oxide(rGO)-Ti_(3)C_(2)T_(x)MXene(rG-M)porous films with optimized continuous cellular morphology by a controlled hydrazine foaming process.The presence of MXene prevents excessive expansion of the rG-M film,improves the electron conduction paths,and enhances the mechanical properties.The resultant rG-M porous film has superior mechanical and electric performances compared to its rGO counterpart,giving one of the highest tensile strengths(24.5 MPa)among the porous films,a high electrical conductivity of 74.4 S·cm^(−1),and an excellent broadband EMI shielding from 8 to 26.5 GHz.A high EMI shielding effectiveness of 52.6 dB is achieved for the porous film by adjusting its thickness and treatment procedure,providing a feasible fabrication route for lightweight and high-performance EMI shielding materials.展开更多
Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidat...Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.展开更多
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface...Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.展开更多
High-performance organic composite thermoelectric(TE)materials are considered as a promising alternative for harvesting heat energy.Herein,composite films of poly(3,4-ethyienedioxythiophene):poly(styrene sulfonate)/si...High-performance organic composite thermoelectric(TE)materials are considered as a promising alternative for harvesting heat energy.Herein,composite films of poly(3,4-ethyienedioxythiophene):poly(styrene sulfonate)/single-walled carbon nanotubes(PEDOT:PSS/SWCNTs)were fabricated by utilizing a convenient solution mixing method.Thereafter,the as-prepared hybrid films were treated using sulfuric acid(H_(2)SO_(4))to further optimize the TE performance.Film morphological studies revealed that the sulfuric acid treated PEDOT:PSS/SWCNTs composite samples all possessed porous structures.Due to the successful fabrication of highly conductive networks,the porous nano-architecture also exhibited much more excellent TE properties when compared with the dense structure of the pristine samples.For the post-treated sample,a high power factor of 156.43μW·m^(-1)·K^(-2)can be achieved by adjusting the content of CNTs,which is approximately 3 orders of magnitude higher than that of the corresponding untreated samples(0.23μW·m^(-1)·K^(-2)).Besides,the obtained films also showed excellent mechanical flexibility,owing to the porous nanostructure and the strong p–p interactions between the two components.This work indicates that the H_(2)SO_(4) treatment could be a promising strategy for fabricating highly-flexible and porous PEDOT:PSS/SWCNTs films with high TE performances.展开更多
By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that th...By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.展开更多
3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra...3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra thin sheets, which consist of numbers of nanoparticles and pores, and the size of the nanoparticles can be controlled by adjusting the electrodepo- sition time or calcination temperature. It is worth noting that this synthetic method can provide an effective route for other porous metal oxide nanostructure films. Moreover, the photocatalytic performance shows the porous ZnO is an ideal photocatalyst.展开更多
Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el...Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.展开更多
Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization...Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization method and two step anodization method is different. Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.展开更多
Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electr...Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that TiO2 film prepared from precursor solution without PEG is composed of spherical particles of about 100 nm and several nanometer mesoporous pores. With the increase of the amount of PEG added to the precursor solution, the diameter and the depth of the pores in the resultant films increas on the decomposition of PEG during heat-treatment, which lead to them increase of the surface roughness of the films. XRD and TEM results show that the single anatase phase is precipitated and there are some orientation effects in (101) direction.展开更多
We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with t...We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.展开更多
Porous ZnO films were prepared by electrodeposition method in zinc nitrate aqueous solution using ITO glass covered with polystyrene sphere (PS) colloidal crystal arrays as substrates. The preparation procedure incl...Porous ZnO films were prepared by electrodeposition method in zinc nitrate aqueous solution using ITO glass covered with polystyrene sphere (PS) colloidal crystal arrays as substrates. The preparation procedure includes two parts: deposition of ZnO in the interstices of the colloidal crystals and subsequent removal of the PS templates. The influences of deposition potential and temperature on the ZnO films were investigated. The ordered, uniform porous ZnO films with optical transmittance of approximately 63.6% at 600 nm could be obtained when the deposition potential and temperature were –1.1 V and 70 ℃, respectively. The optical band gap energy increased along with the absolute deposition potential and temperature, ranging from 3.33 to 3.43 eV and from 3.35 to 3.42 eV, respectively.展开更多
Semiconductor-type TiO2 oxygen sensing thin films were synthesized using tetrabutyl titanate (Ti (OBu)4) as precursor and diethanolamine (DEA) as complexing agent by the sol-get process. The porous and oxygen se...Semiconductor-type TiO2 oxygen sensing thin films were synthesized using tetrabutyl titanate (Ti (OBu)4) as precursor and diethanolamine (DEA) as complexing agent by the sol-get process. The porous and oxygen sensing TiO2 films were obtained by the addition of polyethylene glycol (PEG). The micrographs of scanning electron microscope (SEM) show that the pores of the sample about 400-600 nm in size with PEG(2 000 g/mol) are larger than those about 300 nm in size with PEG( 1 000 g/mol), while the density of pores is lower. The results also indicate that increasing the content of PEG properly is beneficial to the formation of porous structure. With the increasing content of PEG from 0 g to 2.5 g, the oxygen sensitivity increases from 330 to more than 1 000 at 800 ℃, from 170 to more than 1 000 at 900℃, and the response time to O2 and H2 are about 1.5 s and less than 1s, respectively.展开更多
Depth profiled positronium (Ps) annihilation lifetime spectroscopy (PALS) is an extremely useful probe of the pore characteristics in nanoporous low-dielectric (low-k) constant thin films. PALS has also been con...Depth profiled positronium (Ps) annihilation lifetime spectroscopy (PALS) is an extremely useful probe of the pore characteristics in nanoporous low-dielectric (low-k) constant thin films. PALS has also been considered as a potential probe to investigate diffusion barrier integrity and the structural changes of porous low-k films during their integration with Cu. Hence, it is essential to understand the diffusion behaviour of positronium/Cu atoms in the films. In this work, based on the fact that porous materials possess characteristics of statistical self-similarity, a fractal model, the Menger sponge model, has been applied to simulate the structure of a promising dielectric, porous methylsilsesquioxane (MSQ) films. The diffusion behaviour of Ps out of the fractal model and into the surrounding vacuum is studied by means of the diffusion equation and traditional adveetive diffusive theory. Predictive results from our model show good agreement with measurement data.展开更多
A homogeneous crack-free nano- or meso-porous silica films on silicon was fabricated by colloidal silica sol derived by hydrolyzing tetraethyl orthosilicate (TEOS) catalyzing with (C4H9)4N+OH- in water medium. The sol...A homogeneous crack-free nano- or meso-porous silica films on silicon was fabricated by colloidal silica sol derived by hydrolyzing tetraethyl orthosilicate (TEOS) catalyzing with (C4H9)4N+OH- in water medium. The solution with ratio of H2O/TEOS15, R4N+ and glycerol as templates, combining with the hydrolyzed intermediate, controlled the silica aggregating; the templated silica film with heterostructure was developed into homogeneous nano-porous then meso-porous silica films after being annealed from 750 C to 850 C; the formation mechanism of the porous silica films was discussed; morphologies of the silica films were characterized. The refractive indexes of the porous silica films were 1.2561.458, the thermal conductivity < 0.7 W/m/K. The fabricating procedure and the sequence had not been reported before.展开更多
文摘Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and mille. In addition, the forming mechanism of anatase and mille TiO2 porous films was discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos.10872003,10932001 and 10525209)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD,GrantNo.2007B2)
文摘Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface layers is proposed. The static deformation and resonance frequencies of these surface-enhanced sensors with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass are analyzed. It is shown that the sensitivities of these novel cantilever sensors for the static deformation and resonance frequencies can be tuned by the porosity, the size of the pores and the structure of the porous films. For the three kinds of cantilever consisting of solid films, films with aligned cylindrical micro-scale pores, and those with nano-scale pores, the nano-porous one has the highest static and dynamic sensitivities, whereas the solid one has the lowest.
基金Funded by the National Natural Science Foundation of China(No.11747133)the Fundamental Research Funds for the Central Universities(No.195209019)。
文摘To study the effect of different deposition temperatures on the optical properties of porous SiC films,single crystal Si was used as the substrate,a layer of anodic aluminum oxide(AAO)film was transferred on the Si substrate by chemical method,and then a layer of SiC was deposited on anodic aluminum oxide(AAO)template to prepare porous fluorescent SiC film by magnetron sputtering.The deposition temperature was ranged from 373 to 873 K.The thickness of the porous SiC film coated on the AAO surface was around 283 nm.It is found that the porous SiC with the deposition temperature of 873 K has the strongest photoluminescence(PL)intensity excited by 375 nm laser.The time-resolved PL spectra prove that the PL is mainly from intrinsic light emitting of SiC.With the optimized process,porous amorphous SiC film may have potential applications in the field of warm white LEDs.
基金We are gratefully for the financial support from the National Natural Science Foundation of China(Nos.52003106,21674019,and 52161135302)the Fundamental Research Funds for the Central Universities(Nos.JUSRP12032 and 2232019A3-03)+4 种基金the Research Foundation Flanders(No.G0F2322N)China Postdoctoral Science Foundation(No.2021M691265)Ministry of Education of the People’s Republic of China(No.6141A0202202)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.KYCX22_2319 and SJCX22_1110)Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-03-E00108).
文摘Designing and fabricating efficient electromagnetic interference(EMI)shielding materials becomes a significant and urgent concern.Hence,a novel ultrathin,flexible,and oxidation-resistant MXene-based graphene(M-rGX)porous film is successfully fabricated by electrostatic self-assembly between MXene and graphene oxide(GO)nanosheets,and subsequently thermal annealing under hydrogen-argon atmosphere.The rapid breakaway of functional groups on GO and MXene sheets induces formation of porous conductive network in film,thereby facilitating efficient shielding for incident electromagnetic waves.The optimal absolute shielding effectiveness(SSE/t)value of 76,422 dB·cm2·g−1 can be achieved at a thinner thickness of 15μm.More importantly,the effective removal of functional groups on MXene conspicuously improves the oxidation resistance of the film,endowing it with an excellent durability(12 months)in EMI shielding performance.
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0208701)National Natural Science Foundation of China(grant no.21773308)+6 种基金Research Funds of Renmin University of China(grant nos.2017030013,201903020,and 20XNH059)Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS)supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)the experimental support from Suzhou Fangsheng FS-300funding from Deutsche Forschungsge-meinschaft(DFG)via Germany's Excellence Strategy-EXC 2089/1-390776260(e-conversion)as well as from TUM.solar in the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid(SoITech)the China Scholarship Council(CSC)funding
文摘The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.
基金support and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2020JQ-164)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars。
文摘MXene presents excellent electrical conductivity,abundant surface functional groups and wonderful filmforming performance,but the lamellar layers are prone to self-stacking during film formation,which will reduce the loss of electromagnetic waves,hinder ion transmission,and limit the effective load of other functional materials.The construction of the porous structure can effectively solve the self-stacking problem of MXene sheets.This article reviews the research progress of MXene porous films for electromagnetic interference(EMI)shielding,lithium/sodium ion batteries,pseudocapacitors,and biomedical science applications.It focuses on the preparation methods of MXene porous films,and discusses the pore-forming mechanism of the porous structure formed by different preparation methods and the internal relationship between the“microstructure-macroscopic performance”of the MXene porous films,points out the key scientific and technical bottlenecks that need to be solved urgently in the preparation and application of the MXene porous films.It is hoped to provide certain guidance for the design,preparation,optimization,industrial application,and development of MXene porous films.
基金supported by the National Natural Science Foundation of China(Nos.51922020 and U1905217)the Fundamental Research Funds for the Central Universities(Nos.BHYC1707B and XK1802-2).
文摘Lightweight,flexible,and electrically conductive porous films are promising for efficient electromagnetic interference(EMI)shielding.However,the mechanical and electrical properties of porous films are far from optimum.Herein,we fabricate mechanically flexible and electrically conductive reduced graphene oxide(rGO)-Ti_(3)C_(2)T_(x)MXene(rG-M)porous films with optimized continuous cellular morphology by a controlled hydrazine foaming process.The presence of MXene prevents excessive expansion of the rG-M film,improves the electron conduction paths,and enhances the mechanical properties.The resultant rG-M porous film has superior mechanical and electric performances compared to its rGO counterpart,giving one of the highest tensile strengths(24.5 MPa)among the porous films,a high electrical conductivity of 74.4 S·cm^(−1),and an excellent broadband EMI shielding from 8 to 26.5 GHz.A high EMI shielding effectiveness of 52.6 dB is achieved for the porous film by adjusting its thickness and treatment procedure,providing a feasible fabrication route for lightweight and high-performance EMI shielding materials.
基金This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK2004129) the Aviation Science Foundation of China (No. 04H52059).
文摘Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.
文摘Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2004174,51773118,and 51673044)。
文摘High-performance organic composite thermoelectric(TE)materials are considered as a promising alternative for harvesting heat energy.Herein,composite films of poly(3,4-ethyienedioxythiophene):poly(styrene sulfonate)/single-walled carbon nanotubes(PEDOT:PSS/SWCNTs)were fabricated by utilizing a convenient solution mixing method.Thereafter,the as-prepared hybrid films were treated using sulfuric acid(H_(2)SO_(4))to further optimize the TE performance.Film morphological studies revealed that the sulfuric acid treated PEDOT:PSS/SWCNTs composite samples all possessed porous structures.Due to the successful fabrication of highly conductive networks,the porous nano-architecture also exhibited much more excellent TE properties when compared with the dense structure of the pristine samples.For the post-treated sample,a high power factor of 156.43μW·m^(-1)·K^(-2)can be achieved by adjusting the content of CNTs,which is approximately 3 orders of magnitude higher than that of the corresponding untreated samples(0.23μW·m^(-1)·K^(-2)).Besides,the obtained films also showed excellent mechanical flexibility,owing to the porous nanostructure and the strong p–p interactions between the two components.This work indicates that the H_(2)SO_(4) treatment could be a promising strategy for fabricating highly-flexible and porous PEDOT:PSS/SWCNTs films with high TE performances.
基金Supported by the National Natural Science Foundation of China(Nos.20606035, 20401015, 50574082)Chinese Acade-my of Sciences Project of One Hundred Talents.
文摘By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.
文摘3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra thin sheets, which consist of numbers of nanoparticles and pores, and the size of the nanoparticles can be controlled by adjusting the electrodepo- sition time or calcination temperature. It is worth noting that this synthetic method can provide an effective route for other porous metal oxide nanostructure films. Moreover, the photocatalytic performance shows the porous ZnO is an ideal photocatalyst.
基金Project(50571003) supported by the National Natural Science Foundation of China
文摘Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.
文摘Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization method and two step anodization method is different. Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.
基金The work was partially supported by a grant from the National Natural Science Foundation of China and the ResearchGrants Counc
文摘Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-get route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that TiO2 film prepared from precursor solution without PEG is composed of spherical particles of about 100 nm and several nanometer mesoporous pores. With the increase of the amount of PEG added to the precursor solution, the diameter and the depth of the pores in the resultant films increas on the decomposition of PEG during heat-treatment, which lead to them increase of the surface roughness of the films. XRD and TEM results show that the single anatase phase is precipitated and there are some orientation effects in (101) direction.
基金supported by the HK Innovation and Technology Fund (ITS/004/14)the HK-RGC General Research Funds (GRE No. HKUST 606511)
文摘We develop a dual porous (DP) TiO2 film for the electron transporting layer (ETL) in carbon cathode based perovskite solar cells (C-PSCs). The DP TiO2 film was synthesized via a facile PS-templated method with the thickness being controlled by the spin-coating speed. It was found that there is an optimum DP TiO2 film thickness for achieving an effective ETL, a suitable perovskite]TiO2 interface, an efficient light harvester and thus a high performance C-PSC. In particular, such a DP TiO2 film can act as a scaffold for complete-filling of the pores with perovskite and for forming high-quality perovskite crystals that are seamlessly interfaced with Ti02 to enhance interracial charge injection. Leveraging the unique advantages of DP TiO2 ETL, together with a dense-packed and pinhole-free TiO2 compact layer, PCE of the C-PSCs has reached 9.81% with good stability.
基金Funded by the Key Project of Chinese Ministry of Education (No. 208008)China Postdoctoral Science Foundation Funded Project (No. 20080440674)
文摘Porous ZnO films were prepared by electrodeposition method in zinc nitrate aqueous solution using ITO glass covered with polystyrene sphere (PS) colloidal crystal arrays as substrates. The preparation procedure includes two parts: deposition of ZnO in the interstices of the colloidal crystals and subsequent removal of the PS templates. The influences of deposition potential and temperature on the ZnO films were investigated. The ordered, uniform porous ZnO films with optical transmittance of approximately 63.6% at 600 nm could be obtained when the deposition potential and temperature were –1.1 V and 70 ℃, respectively. The optical band gap energy increased along with the absolute deposition potential and temperature, ranging from 3.33 to 3.43 eV and from 3.35 to 3.42 eV, respectively.
基金National Natural Science Foundation of China (No 59995520)
文摘Semiconductor-type TiO2 oxygen sensing thin films were synthesized using tetrabutyl titanate (Ti (OBu)4) as precursor and diethanolamine (DEA) as complexing agent by the sol-get process. The porous and oxygen sensing TiO2 films were obtained by the addition of polyethylene glycol (PEG). The micrographs of scanning electron microscope (SEM) show that the pores of the sample about 400-600 nm in size with PEG(2 000 g/mol) are larger than those about 300 nm in size with PEG( 1 000 g/mol), while the density of pores is lower. The results also indicate that increasing the content of PEG properly is beneficial to the formation of porous structure. With the increasing content of PEG from 0 g to 2.5 g, the oxygen sensitivity increases from 330 to more than 1 000 at 800 ℃, from 170 to more than 1 000 at 900℃, and the response time to O2 and H2 are about 1.5 s and less than 1s, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60476011)
文摘Depth profiled positronium (Ps) annihilation lifetime spectroscopy (PALS) is an extremely useful probe of the pore characteristics in nanoporous low-dielectric (low-k) constant thin films. PALS has also been considered as a potential probe to investigate diffusion barrier integrity and the structural changes of porous low-k films during their integration with Cu. Hence, it is essential to understand the diffusion behaviour of positronium/Cu atoms in the films. In this work, based on the fact that porous materials possess characteristics of statistical self-similarity, a fractal model, the Menger sponge model, has been applied to simulate the structure of a promising dielectric, porous methylsilsesquioxane (MSQ) films. The diffusion behaviour of Ps out of the fractal model and into the surrounding vacuum is studied by means of the diffusion equation and traditional adveetive diffusive theory. Predictive results from our model show good agreement with measurement data.
文摘A homogeneous crack-free nano- or meso-porous silica films on silicon was fabricated by colloidal silica sol derived by hydrolyzing tetraethyl orthosilicate (TEOS) catalyzing with (C4H9)4N+OH- in water medium. The solution with ratio of H2O/TEOS15, R4N+ and glycerol as templates, combining with the hydrolyzed intermediate, controlled the silica aggregating; the templated silica film with heterostructure was developed into homogeneous nano-porous then meso-porous silica films after being annealed from 750 C to 850 C; the formation mechanism of the porous silica films was discussed; morphologies of the silica films were characterized. The refractive indexes of the porous silica films were 1.2561.458, the thermal conductivity < 0.7 W/m/K. The fabricating procedure and the sequence had not been reported before.