This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metal...This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.展开更多
A novel anodic oxidization equipment was designed to fabricate a large number of porous anodic alumina (PAA) templates in one time. This approach improved the efficiency of the preparation of the PAA templates remar...A novel anodic oxidization equipment was designed to fabricate a large number of porous anodic alumina (PAA) templates in one time. This approach improved the efficiency of the preparation of the PAA templates remarkably in a normal lab and is expected to be used for the large-scale production in the future.展开更多
The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pore...The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.展开更多
The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiN...The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler-Nordheim tunneling mechanism and current-voltage (I-V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be utilized to synthesize nanoscale PN junction or Schottky diode device. This process also could be useful for the fabrication of SiNWs and other nanoscale core-sheath composite structure nanowires with chemically inert interfaces for nanoscale electronic and device applications where surface oxidation is undesirable. The diameters and lengths of nanoscale composite structure arrays can be dominated easily, and the experimental result shows that the curling and twisting structures are fewer than those prepared by other synthesized methods.展开更多
Highly ordered poly crystalline Si nanowire arrays were synthesized in porous anodic aluminum oxide (AAO) templates by the chemical vapor deposition (CVD) method. The morphological structure, the crystal character of ...Highly ordered poly crystalline Si nanowire arrays were synthesized in porous anodic aluminum oxide (AAO) templates by the chemical vapor deposition (CVD) method. The morphological structure, the crystal character of Si nanowire arrays and the individual nanowire were analyzed by the transmission electron microscopy (TEM), scanning electron microscopy (SEM), atom force microscopy (AFM) and the X-ray diffraction spectrum (XRD), respectively. It is shown that most fabricated silicon nanowires (SiNWs) tend to be assembled parallelly in bundles and constructed with highly orientated arrays. This method provides a simple and low cost fabricating craftwork and the diameters and lengths of SiNWs can be controlled, the large area Si nanowire arrays can be achieved easily under such a way. The curling and twisting SiNWs are fewer than those by other synthesis methods.展开更多
The highly ordered CuO nanowire arrays of composite-oxides were synthesized within a porous anodic aluminum oxide(AAO) template by a citrate-based sol-gel route. A vacuum system was applied to draw the gel into the te...The highly ordered CuO nanowire arrays of composite-oxides were synthesized within a porous anodic aluminum oxide(AAO) template by a citrate-based sol-gel route. A vacuum system was applied to draw the gel into the template pores, which conquers the only driving force of this technique—capillary action, then the gel was thermally treated to prepare desired CuO nanowires. The results of scanning electron microscopy(SEM) indicate that the CuO nanowires are very uniformly assembled and parallel to each other in the pores of the anodic aluminum oxide(AAO) template membranes. The results of X-ray diffraction(XRD) and the selected-area electron diffraction(SAED) indicate that the CuO nanowires are monoclinic-type crystalline structure. Furthermore, X-ray photoelectron spectroscopy (XPS) demonstrates that the stoichiometric CuO is formed.展开更多
One of the most unique structural characteristics of carbon nanotubes(CNTs) differentiating from other carbon materials is their hollow nanochannles,which can be utilized for encapsulating and loading foreign matters....One of the most unique structural characteristics of carbon nanotubes(CNTs) differentiating from other carbon materials is their hollow nanochannles,which can be utilized for encapsulating and loading foreign matters.The anodic aluminum oxide(AAO) template technique enables the diameter,length,and cap structure control of the replicated CNTs,and thus shows advantages in pore structure control over the traditional CNT growth approaches.This review details the synthesis of CNTs with tunable diameter,length,wall thickness,and crystalline by using the AAO template method.The doping of heteroatoms and filling of foreign matters into AAO-CNTs are also addressed.Moreover,the main challenges and developing trends of the AAO template method are discussed.展开更多
基金the support provided by the Japan Society for the Promotion of Science(JSPS)Fellowship program at the National Institute of Advanced Industrial Science and Technology,Tsukuba,Japanthe National Natural Science Foundation of China(Grant No.10704074)+1 种基金the Special Project of Excellent Young Researchers of Anhui Province,Chinathe Project of Excellent President Scholarship of Chinese Academy of Sciences.
文摘This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.
基金supported by the National Nature Science Foundation of China (No.20473106)the 973 Project (No.2003CB716200)the Innovation Group Project (No.50421502) of Chinese Ministry of Science & Technology.
文摘A novel anodic oxidization equipment was designed to fabricate a large number of porous anodic alumina (PAA) templates in one time. This approach improved the efficiency of the preparation of the PAA templates remarkably in a normal lab and is expected to be used for the large-scale production in the future.
基金This work was supported by the National Natural Science Foundation of China (No. 20023003 and 20128004).
文摘The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.
基金The authors thank Mr. Cao Guixun of Analysis and Testing Center of Gansu Province Cor usefulhelp and discussion. This work was supported by the National Natural Science Foundation of China (Grant Nos. 69890220 and 69871013).
文摘The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler-Nordheim tunneling mechanism and current-voltage (I-V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be utilized to synthesize nanoscale PN junction or Schottky diode device. This process also could be useful for the fabrication of SiNWs and other nanoscale core-sheath composite structure nanowires with chemically inert interfaces for nanoscale electronic and device applications where surface oxidation is undesirable. The diameters and lengths of nanoscale composite structure arrays can be dominated easily, and the experimental result shows that the curling and twisting structures are fewer than those prepared by other synthesized methods.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 69890220 and 69871013).
文摘Highly ordered poly crystalline Si nanowire arrays were synthesized in porous anodic aluminum oxide (AAO) templates by the chemical vapor deposition (CVD) method. The morphological structure, the crystal character of Si nanowire arrays and the individual nanowire were analyzed by the transmission electron microscopy (TEM), scanning electron microscopy (SEM), atom force microscopy (AFM) and the X-ray diffraction spectrum (XRD), respectively. It is shown that most fabricated silicon nanowires (SiNWs) tend to be assembled parallelly in bundles and constructed with highly orientated arrays. This method provides a simple and low cost fabricating craftwork and the diameters and lengths of SiNWs can be controlled, the large area Si nanowire arrays can be achieved easily under such a way. The curling and twisting SiNWs are fewer than those by other synthesis methods.
基金Project(200623) supported by the Science Foundation of Shenzhen University, China
文摘The highly ordered CuO nanowire arrays of composite-oxides were synthesized within a porous anodic aluminum oxide(AAO) template by a citrate-based sol-gel route. A vacuum system was applied to draw the gel into the template pores, which conquers the only driving force of this technique—capillary action, then the gel was thermally treated to prepare desired CuO nanowires. The results of scanning electron microscopy(SEM) indicate that the CuO nanowires are very uniformly assembled and parallel to each other in the pores of the anodic aluminum oxide(AAO) template membranes. The results of X-ray diffraction(XRD) and the selected-area electron diffraction(SAED) indicate that the CuO nanowires are monoclinic-type crystalline structure. Furthermore, X-ray photoelectron spectroscopy (XPS) demonstrates that the stoichiometric CuO is formed.
基金supported by the Ministry of Science and Technology of China (2011CB932601,2011CB932604,and 2008DFA51400)the Clean Energy Facing the Future Program between the Chinese Academy of Sciences and British Petrleum+1 种基金National Natural Science Foundation of China (50921004 and 50872137)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘One of the most unique structural characteristics of carbon nanotubes(CNTs) differentiating from other carbon materials is their hollow nanochannles,which can be utilized for encapsulating and loading foreign matters.The anodic aluminum oxide(AAO) template technique enables the diameter,length,and cap structure control of the replicated CNTs,and thus shows advantages in pore structure control over the traditional CNT growth approaches.This review details the synthesis of CNTs with tunable diameter,length,wall thickness,and crystalline by using the AAO template method.The doping of heteroatoms and filling of foreign matters into AAO-CNTs are also addressed.Moreover,the main challenges and developing trends of the AAO template method are discussed.