期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Anisotropic Porous Ti6Al4V Alloys Fabricated by Diffusion Bonding:Adaption of Compressive Behavior to Cortical Bone Implant Applications 被引量:2
1
作者 Fuping Li Jinshan Li +1 位作者 Hongchao Kou Lian Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期937-943,共7页
In this work, porous Ti6Al4V alloys with 30%-70% porosity for biomedical applications were fabricated by diffusion bonding of alloy meshes. Pore structure was characterized by Micro-CT and SEM. Compressive behavior in... In this work, porous Ti6Al4V alloys with 30%-70% porosity for biomedical applications were fabricated by diffusion bonding of alloy meshes. Pore structure was characterized by Micro-CT and SEM. Compressive behavior in the out-of-plane direction and biocompatibility with cortical bone were studied. The results reveal that the fabricated porous Ti6Al4V alloys possess anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The average pore size of porous Ti6Al4V alloys with 30%-70% porosity is in the range of 240-360 Bin. By tailoring diffusion bonding temperature, aspect ratio of alloy meshes and porosity, porous Ti6Al4V alloys with different compressive properties can be obtained, for instance, Young's modulus and yield stress in the ranges of 4-40 GPa and 70-500 MPa, respectively. Yield stress of porous Ti6Al4V alloys fabricated by diffusion bonding is close to that of alloys fabricated by rapid prototyping, hut higher than that of fabricated by powder sintering and space-holder method. Diffusion bonding temperature has some effects on the yield stress of porous Ti6Al4V alloys, but has a minor effect on the Young's modulus. The relationship between compressive properties and relative density conforms well to the Gibson-Ashby model. The Young's modulus is linear with the aspect ratio, while the yield stress is linear with the square of aspect ratio of alloy meshes. Porous Ti6Al4V alloys with 60%-70% porosity have potential for cortical bone implant applications. 展开更多
关键词 porous biomaterials titanium alloys diffusion bonding compressive behavior bioadaption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部