期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Spatial confinement of zeolitic imidazolate framework deposits by porous carbon nanospheres for dual-atom catalyst towards high-performance oxygen reduction reaction 被引量:1
1
作者 Jiayi Zhao Ping Li +6 位作者 Kaicai Fan Wenjie Wei Fenghong Lu Huimin Zhao Bin Li Lingbo Zong Lei Wang 《Nano Research》 SCIE EI CSCD 2023年第8期11464-11472,共9页
Dual atom catalysts(DACs),are promising electrocatalysts for oxygen reduction reaction(ORR)on account of the potential dual-atom active sites for the optimized adsorption of catalytic intermediates and the lower react... Dual atom catalysts(DACs),are promising electrocatalysts for oxygen reduction reaction(ORR)on account of the potential dual-atom active sites for the optimized adsorption of catalytic intermediates and the lower reaction energy barriers.Herein,spatial confinement strategy to fabricate DACs with well-defined Fe,Co dual-atom active site is proposed by implanting zeolitic imidazolate frameworks inside the pores of highly porous carbon nanospheres(Fe/Co-SAs-Nx-PCNSs).The atomically dispersed dual-atom active sites facilitate the adsorption/desorption of intermediates.Furthermore,the spatial confinement effect protects metal atoms aggregating.Benefiting from the rich accessible dual-atom active sites and boosted mass transport,we achieve remarkable ORR performance with half-wave potential up to 0.91 and 0.8 V(vs.reversible hydrogen electrode(RHE)),and long-term stability up to 10 h in both alkaline and acidic electrolytes.The remarkably enhanced ORR catalytic property of our as-developed DACs is in the rank of excellence for 1%.The as-developed rechargeable Zn-air battery(ZAB)with Fe/Co-SAs-Nx-PCNSs air cathode delivers ultrahigh power density of 216 mW·cm^(−2),outstanding specific capacity of 813 mAh·g^(−1),and promising cycling operation durability over 160 h.The flexible Zn-air battery also exhibits excellent specific capacity,cycling stability,and flexibility performance.This work opens up a new pathway for the multiscale design of efficient electrocatalysts with atomically dispersed multiple active sites. 展开更多
关键词 spatial confinement zeolitic imidazolate framework porous carbon nanospheres(PCNSs) dual-atom catalyst oxygen reduction reaction(ORR)
原文传递
A facile template free synthesis of porous carbon nanospheres with high capacitive performance 被引量:1
2
作者 Junyu Piao Deshan Bin +3 位作者 Shuyi Duan Xijie Lin Dong Zhang Anmin Cao 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第5期538-544,共7页
Porous carbon nanospheres have been widely used in different fields such as electric devices, catalysts, and water treatment. Here we will introduce a template-free process for the preparation of porous carbon nanosph... Porous carbon nanospheres have been widely used in different fields such as electric devices, catalysts, and water treatment. Here we will introduce a template-free process for the preparation of porous carbon nanospheres starting from a direct 3-aminophenol formaldehyde polymerization in a mixed solution. We identify that the addition of different alcohols, particularly ethanol and nbutanol, is able to change the growth habit of the polymer nanospheres and introduce a favorable inner compositional homogeneity for the preparation of porous structure. After the carbonization of the polymer nanospheres, the obtained porous carbon exhibits promising electrochemical performance when used as electrode material in super capacitor. 展开更多
关键词 porous carbon nanospheres alcohol mixed solvent template-free super capacitors
原文传递
High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH_(2) 被引量:2
3
作者 Shun Wang Mingxia Gao +5 位作者 Zhihao Yao Kaicheng Xian Meihong Wu Yongfeng Liu Wenping Sun Hongge Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3354-3366,共13页
Magnesium hydride(MgH2) is one of the most promising hydrogen storage materials for practical application due to its favorable reversibility, low cost and environmental benign;however, it suffers from high dehydrogena... Magnesium hydride(MgH2) is one of the most promising hydrogen storage materials for practical application due to its favorable reversibility, low cost and environmental benign;however, it suffers from high dehydrogenation temperature and slow sorption kinetics.Exploring proper catalysts with high and sustainable activity is extremely desired for substantially improving the hydrogen storage properties of MgH2. In this work, a composite catalyst with high-loading of ultrafine Ni nanoparticles(NPs) uniformly dispersed on porous hollow carbon nanospheres is developed, which shows superior catalytic activity towards the de-/hydrogenation of MgH2. With an addition of 5wt% of the composite, which contains 90 wt% Ni NPs, the onset and peak dehydrogenation temperatures of MgH2are lowered to 190 and 242 ℃, respectively. 6.2 wt% H2is rapidly released within 30 min at 250 ℃. The amount of H2that the dehydrogenation product can absorb at a low temperature of 150 ℃ in only 250 s is very close to the initial dehydrogenation value. A dehydrogenation capacity of 6.4wt% remains after 50 cycles at a moderate cyclic regime, corresponding to a capacity retention of 94.1%. The Ni NPs are highly active,reacting with MgH2and forming nanosized Mg2Ni/Mg2NiH4. They act as catalysts during hydrogen sorption cycling, and maintain a high dispersibility with the help of the dispersive role of the carbon substrate, leading to sustainably catalytic activity. The present work provides new insight into designing stable and highly active catalysts for promoting the(de)hydrogenation kinetics of MgH2. 展开更多
关键词 Hydrogen storage materials Nano-catalysis Magnesium hydride porous hollow carbon nanospheres Ni nanoparticles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部