期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Fracture Characterization of High-Density Polyethylene Materials Using the Energetic Criterias 被引量:1
1
作者 M.N.D.Cherief M.Elmeguenni M.Benguediab 《Computers, Materials & Continua》 SCIE EI 2016年第3期187-201,共15页
Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high d... Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used. 展开更多
关键词 IMPACT Fracture toughness high-density polyethylene Brittle fracture Ductile fracture
下载PDF
Micromechanical analysis on tensile properties prediction of discontinuous randomized zalacca fibre/high-density polyethylene composites under critical fibre length 被引量:1
2
作者 Dody Ariawan Eko Surojo +3 位作者 Joko Triyono Ibrahim Fadli Purbayanto Agil Fitri Pamungkas Aditya Rio Prabowo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第1期57-65,共9页
In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method ... In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study. 展开更多
关键词 Zalacca fibre Micromechanical analysis high-density polyethylene Critical fibre length Tensile properties
下载PDF
Characterization and Comparison of Rheological Properties of Agro Fiber Filled High-Density Polyethylene Bio-Composites 被引量:1
3
作者 Anselm O. Ogah Joseph N. Afiukwa A. A. Nduji 《Open Journal of Polymer Chemistry》 2014年第1期12-19,共8页
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100... The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers. 展开更多
关键词 MELT RHEOLOGY Agro Fiber BIO-COMPOSITES VISCOELASTICITY high-density polyethylene
下载PDF
Decorative Wood Fiber/High-Density Polyethylene Composite with Canvas or Polyester Fabric
4
作者 Jialin Lv Rao Fu +4 位作者 Yinan Liu Xuelian Zhou Weihong Wang Pengbo Xie Tingwei Hu 《Journal of Renewable Materials》 SCIE EI 2020年第8期879-890,共12页
Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating w... Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength. 展开更多
关键词 wood-plastic composites high-density polyethylene polyester fiber CANVAS surface decoration
下载PDF
Studies on the Effects of Bentonite (Nanoclay) on the Mechanical Properties of High-Density Polyethylene
5
作者 Jerome Anokwu 《Journal of Minerals and Materials Characterization and Engineering》 2019年第6期421-434,共14页
In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improv... In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM. 展开更多
关键词 high-density polyethylene BENTONITE TENSILE Strength MODULUS
下载PDF
High-Density Polyethylene Based on Exfoliated Graphite Nanoplatelets/Nano-Magnesium Oxide: An Investigation of Thermal Properties and Morphology
6
作者 A. I. Alateyah 《Materials Sciences and Applications》 2019年第3期159-169,共11页
In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. T... In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers. 展开更多
关键词 high-density polyethylene EXFOLIATED GRAPHITE NANOPLATELETS Magnesium Oxide Nanoparticles TGA XRD SEM
下载PDF
PREPARATION OF HIGH DENSITY POLYETHYLENE/POLYETHYLENE-BLOCK-POLY(ETHYLENE GLYCOL)COPOLYMER BLEND POROUS MEMBRANES VIA THERMALLY INDUCED PHASE SEPARATION PROCESS AND THEIR PROPERTIES 被引量:3
7
作者 朱宝库 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第3期337-346,共10页
High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as d... High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application. 展开更多
关键词 High density polyethylene polyethylene-block-poly(ethylene glycol) copolymer Blend porous membrane Thermally induced phase separation.
下载PDF
EFFECT OF PAN-MILLING STRESS ON CRYSTAL STRUCTURES OF HIGH DENSITY POLYETHYLENE 被引量:1
8
作者 Hua Huang Polymer Research Institute, Sichuan University, Chengdu 610065, China School of chemistry and Chemical Technology,Shanghai Jiao Tong University ,Shanghai 200240,China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第4期363-367,共5页
A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased sl... A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling. 展开更多
关键词 high-density polyethylene PAN-MILLING crystal structure
下载PDF
Effect of substrates on crystallization of high density polyethylene
9
作者 范毓润 林渊 阮绵照 《Journal of Central South University》 SCIE EI CAS 2008年第S1期67-71,共5页
The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystalli... The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate's ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus. 展开更多
关键词 high-density polyethylene ISOTHERMAL CRYSTALLIZATION HEAT conduction
下载PDF
Selection of Thickness of High Density Polyethylene Film for Mulching in Paddy Rice
10
作者 Xiangchen Liu Li Qiao +4 位作者 Zhaocheng Lu Daqing Feng Ping Li Xuejun Fan Kun Xu 《American Journal of Plant Sciences》 2013年第7期1359-1365,共7页
In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in ri... In water deficit area, judicious use of water is essential for increasing area under crop production with limited water supply. Film Mulching has been advocated as an effective means for conserving soil moisture in rice production. The effects of high density polyethylene (HDPE) film on increasing rice production, controlling weeds and residue amount of plastic were studied under five treatments, including 5, 10, 15 and 20 μm thickness as well as bare cultivation (CK). The results indicated that the HDPE film mulching mode had significant effects on weed control, soil temperature, soil moisture, photosynthetic rate, seedling biomass, yield and residues of plastic film. Combined with economic effect, it showed that the HDPE film of 10 μm is the best option for rice production. 展开更多
关键词 PADDY RICE WEED Soil high-density polyethylene Film Thickness
下载PDF
Physical and Thermo-Oxidative Characterization of Asphalt Modified with High Density Polyethylene and Recycled Engine Oil
11
作者 Hélder Manguene Antonino Squillace +1 位作者 Henriques Filimone Herminio Muiambo 《Journal of Materials Science and Chemical Engineering》 2022年第5期73-86,共14页
Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of e... Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of engine oil on the consistency and thermal properties of HDPE-modified asphalt. For this study, compositions containing asphalt, engine oil and high-density polyethylene (HDPE) were prepared, varying the concentration of engine oil by 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% and keeping the concentration of HDPE at 5 wt%. The samples were characterized by conventional tests of penetration, softening point and viscosity, aging in a Rotational Thin Film Oven (RTFO), Thermogravimetric Analysis (TGA). According to the results, the addition of HDPE to virgin asphalt causes an increase in the consistency of the virgin asphalt, which then decreases linearly as the engine oil is added into the matrix. Conventional tests showed improvements in the applicability of the asphalt in terms of resistance to cracks and permanent deformation. TGA showed a slight increase in stability for the modified asphalt samples at elevated temperatures. The RTFO showed mass gain and loss for samples with and without engine oil, respectively. 展开更多
关键词 ASPHALT Engine Oil high-density polyethylene Polymer Modified Asphalt
下载PDF
Thermo-mechanical,Wear and Fracture Behavior of High-density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications:Effect of Accelerated Ageing 被引量:6
12
作者 H.Fouad R.Elleithy Othman Y.Alothman 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第6期573-581,共9页
The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of... The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased. 展开更多
关键词 high-density polyethylene (HDPE) Hydroxyapatite (HAP) HARDNESS Accelerated ageing Dynamic mechanical analysis(DMA) Differential scanning calorimetry (DSC) Fracture
原文传递
Infusing High-density Polyethylene with Graphene-Zinc Oxide to Produce Antibacterial Nanocomposites with Improved Properties
13
作者 You-Li Yao Manuel Reves De Guzman +11 位作者 Hong Duan Chen Gao Xu Lin Yi-Hua Wen Juan Du Li Lin Jui-Chin Chen Chin-San Wu Maw-Cherng Suen Ya-Li Sun Wei-Song Hung Chi-Hui Tsou 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第8期898-907,I0008,共11页
Nanocomposites of high-density polyethylene(HDPE)modified with 0.2 phr graphene-zinc oxide(GN-ZnO)exhibited optimal mechanical properties and thermal stability.Two other nano-materials—GN and nano-ZnO—were also used... Nanocomposites of high-density polyethylene(HDPE)modified with 0.2 phr graphene-zinc oxide(GN-ZnO)exhibited optimal mechanical properties and thermal stability.Two other nano-materials—GN and nano-ZnO—were also used to compare them with GN-ZnO.increasing the content of GN-ZnO gradually enhanced the antibacterial and barrier properties,but the addition of 0.3 phr GN-ZnO led to agglomeration that caused defects in the nanocomposites.Herein,we investigated the antibacterial and barrier properties of HDPE nanocomposites infused with different nanoparticles(GN,ZnO,GN-ZnO)of varying concentrations.HDPE and the nanoparticles were meltblended together in a Haake-Buchler Rheomixer to produce a new environment-friendly nano-material with improved physical and chemical properties.The following characterizations were conducted:tensile test,thermogravimetric analysis,morphology,differential scanning calorimetry,X-ray diffraction,antibacterial test,and oxygen and water vapor permeation test.The results showed that the crystallinity of HDPE was affected with the addition of GN-ZnO,and the nanocomposites had effective antibacterial capacity,strong mechanical properties,high thermal stability,and excellent barrier performance.This type of HDPE nanocomposites reinforced with GN-ZnO would be attractive for packaging industries. 展开更多
关键词 high-density polyethylene Zinc oxide Nanocomposite material Antibacterial properties Barrier performance
原文传递
Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities 被引量:3
14
作者 Shuang Liu Mengjie Sheng +3 位作者 Hao Wu Xuetao Shi Xiang Lu Jinping Qu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第18期147-157,共11页
The development of functional composites with excellent thermal management capabilities and electro-magnetic interference(EMI)shielding has become extremely urgent for keeping up with the continuous improvement of the... The development of functional composites with excellent thermal management capabilities and electro-magnetic interference(EMI)shielding has become extremely urgent for keeping up with the continuous improvement of the operating speed and efficiency for electronic equipment.In this study,the biolog-ical wood-derived porous carbon(WPC)was determined as the supporting material to encapsulating polyethylene glycol(PEG),and a series of WPC/PEG/Fe_(3)O_(4) phase change composites(PCCs)with excel-lent shape stability,EMI shielding and thermal management capabilities were prepared via a simple vac-uum impregnation method.The Fe_(3)O_(4) magnetic particles modified PCCs have greatly improved the EMI shielding effectiveness(SE).The EMI SE of WP-4(7.5 wt.% Fe_(3)O_(4) in PEG)can be up to 55.08 dB between 8.2−12.4 GHz,however,the WP-0 without Fe_(3)O_(4) addition is only 40.08 dB.Meanwhile,the absorption ratio of electromagnetic waves(EMW)has also increased from 75.02%(WP-0)to 85.56%(WP-4),which effectively prevents secondary pollution.In addition,after wrapping a thin layer of polydimethylsiloxane resin(PDMS),the obtained WP-4 can maintain a high heat storage capacity(109.52 J/g)and good wa-ter stability.In short,the prepared WPC/PEG/Fe_(3)O_(4) PCCs have great potential application value in the thermal management and electromagnetic shielding requirements for electronic devices. 展开更多
关键词 Biological wood-derived porous carbon polyethylene glycol Phase change composites Thermal management Electromagnetic interference shielding
原文传递
Resistivity-Temperature Behavior of CB-Filled HDPE Foaming Composites 被引量:4
15
作者 LI Ji-xin ZHANG Guo +2 位作者 LI Zhuo-shi WANG Xin-lei LIU Xiu-qi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第2期215-219,共5页
High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the ... High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the second component, ethylene-vinyl acetate(EVA) and ethylene propylene rubber(EPR) as the third component, azobisformamide(AC) as foamer, and dicumyl peroxide(DCP) as cross-linker. The structure and resistivity-temperature behavior of high-density polyethylene(HDPE)/CB foaming conductive composites were investigated. Influences of carbon black, LDPE, EVA, EPR, AC, and DCP on the foaming performance and resistivity-temperature behavior of HDPE/CB foaming conductive composites were also studied. The results reveal that HDPE/CB foaming conductive composite exhibits better switching characteristic; ACET-filled HDPE foaming conductive composite displays better positive temperature coefficient(PYC) effect; whereas super conductive carbon black(HG-1P)-filled HDPE foaming conductive composite shows better negative temperature coefficient(NTC) effect. 展开更多
关键词 Resistivity-temperature behavior Carbon black high-density polyethylene Foam Positive temperaturecoefficient(PYC) effect Negative temperature coefficient(NYC) effect
下载PDF
Carbon nanotubes periodically decorated by highdensity polyethylene crystalline using solution crystallization 被引量:1
16
作者 LI MingJian WANG XianBao +3 位作者 TIAN Rong WAN Li LI ShaoQing LI Qin 《Science China Chemistry》 SCIE EI CAS 2009年第7期905-910,共6页
The carbon nanotubes (CNTs) periodically decorated by high-density polyethylene (HDPE) composites with nanohybrid shish kebabs (NHSK) structures were prepared by CNTs-initiated solution crystalli-zation. The disc-shap... The carbon nanotubes (CNTs) periodically decorated by high-density polyethylene (HDPE) composites with nanohybrid shish kebabs (NHSK) structures were prepared by CNTs-initiated solution crystalli-zation. The disc-shaped HDPE crystalline lamellae were periodically located on the surface of CNTs in the direction perpendicular to the nanotube axis. Observations from scanning electron microscopy and transmission electron microscopy showed that with the increasing of crystallization temperature, the lateral dimension of the lamellae was decreased and the distance between two neighboring lamellae was increased. However, the thickness of the lamellae did not vary with the crystallization temperature. The formation mechanism of the NHSK structures was also explained. The one-dimensional structure and the ultra-high curved surface of CNTs lead to strong geometry confinement, which plays a main role in the formation of the NHSKs. 展开更多
关键词 polymer composites carbon NANOTUBES high-density polyethylene electron microscopy
原文传递
Effect of ethylene vinyl acetate content on the performance of VMD using HDPE co-blending membrane
17
作者 Na Tang Xinxin Hua +5 位作者 Zhao Li Lei Zhang Jiating Wang Jun Xiang Penggao Cheng Xuekui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第5期1058-1066,共9页
Membranes were fabricated with high-density polyethylene (HDPE) and ethylene vinyl acetate (EVA) blend through thermally induced phase separation and were then used for vacuum membrane distillation (VMD). The membrane... Membranes were fabricated with high-density polyethylene (HDPE) and ethylene vinyl acetate (EVA) blend through thermally induced phase separation and were then used for vacuum membrane distillation (VMD). The membranes were supported by non woven polyester fabric with a special cellular structure. Different membrane samples were obtained by adjusting the polymer concentration, HDPE/EVA weight ratio, and coagulation bath temperature. The membranes were characterized by scanning electron microscopy (SEM) analysis, contact angle test, and evaluation of porosity and pore size distribution. A series of VMD tests were conducted using aqueous NaCI solution (0.5 mol·L^-1) at a feed temperature of 65 ℃ and permeate side absolute pressure of 3 kPa. The membranes showed excellent performance in water permeation flux, salt rejection, and long-term sta-bility. The HDPE/EVA co-blending membranes exhibited the largest permeation flux of 23.87 kg·m^-2·h^-1, and benign salt rejection of ≥99.9%. 展开更多
关键词 Thermally induced phase SEPARATION high-density polyethylene ETHYLENE VINYL ACETATE MEMBRANE SEPARATION Microstructure
下载PDF
Reconstruction of complex chest wall defects:A case report
18
作者 Sheng-Chao Huang Chun-Yan Chen +7 位作者 Pu Qiu Ze-Ming Yan Wei-Zhang Chen Zhong-Zheng Liang Kang-Wei Luo Jian-Wen Li Yuan-Qi Zhang Bao-Yi Huang 《World Journal of Clinical Cases》 SCIE 2022年第11期3505-3510,共6页
BACKGROUND Chronic radiative chest wall ulcers are common in patients undergoing radiation therapy.If not treated early,then symptoms such as erosion,bleeding and infection will appear on the skin.In severe cases,ulce... BACKGROUND Chronic radiative chest wall ulcers are common in patients undergoing radiation therapy.If not treated early,then symptoms such as erosion,bleeding and infection will appear on the skin.In severe cases,ulcers invade the ribs and pleura,presenting a mortality risk.Small ulcers can be repaired with pedicle flaps.Because radioactive ulcers often invade the thorax,surgeons need to remove large areas of skin and muscle,and sometimes ribs.Repairing large chest wall defects are a challenge for surgeons.CASE SUMMARY A 74-year-old female patient was admitted to our department with chest wall skin ulceration after radiation therapy for left breast cancer.The patient was diagnosed with chronic radioactive ulceration.After multidisciplinary discussion,the authors performed expansive resection of the chest wall ulcers and repaired large chest wall defects using a deep inferior epigastric perforator(DIEP)flap combined with a high-density polyethylene(HDPE)patch.The patient was followed-up 6 mo after the operation.No pigmentation or edema was found in the flap.CONCLUSION DIEP flap plus HDPE patch is one of the better treatments for radiation-induced chest wall ulcers. 展开更多
关键词 Deep inferior epigastric perforator flap high-density polyethylene patch Breast cancer Chest wall Chronic radiation-induced ulcer Case report
下载PDF
Medpor®Acts on Stem Cells Derived from Peripheral Blood
19
作者 Vincenzo Sollazzo Annalisa Palmieri +4 位作者 Ambra Girardi Francesca Farinella Giorgio Brunelli Giuseppe Spinelli Francesco Carinci 《Materials Sciences and Applications》 2010年第1期13-18,共6页
Porous polyethylene (PP or Medpor?) is an alloplastic material used worldwide for craniofacial reconstruction. Although several clinical studies are available, how this material alters osteoblast activity to promote b... Porous polyethylene (PP or Medpor?) is an alloplastic material used worldwide for craniofacial reconstruction. Although several clinical studies are available, how this material alters osteoblast activity to promote bone formation is poorly understood. To study how PP can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. PP causes induction of osteoblast transcriptional factor RUNX2 and of the bone related genes osteocalcin (BGLAP) and alkaline phosphatase (ALPL). In contrast the expression of ENG was decreased in stem cells treated with PP respect to untreated cells, indicating the differentiation effect of this biomaterial on stem cells. The obtained results can be relevant to better understand the molecular mechanism of bone regeneration and as a model for comparing other materials with similar clinical effects. 展开更多
关键词 Alloplastic Material porous polyethylene Gene Expression Stem Cells
下载PDF
Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction 被引量:3
20
作者 Mei ZHANG Aiqing ZHANG +3 位作者 Zhenyu CUI Baoku ZHU Gaige HAN Youyi XU 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2008年第1期89-94,共6页
Lithium ion conducting membranes are the key materials for lithium batteries.The lithium ion conducting gel polymer electrolyte membrane(Li-GPEM)based on porous poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HF... Lithium ion conducting membranes are the key materials for lithium batteries.The lithium ion conducting gel polymer electrolyte membrane(Li-GPEM)based on porous poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)matrix and cross-linked PEG network is pre-pared by a typical phase inversion process.By immersing theporousPVDF-HFPmembraneinliquidelectrolytecon-taining poly(ethylene glycol)diacrylate(PEGDA)and an initiator to absorb the liquid electrolyte at 25℃,and then thermally cross-linking at 60℃,the Li-GPEM is fabricated successfully.The measurements on its weight loss,mech-anical and electrochemical properties reveal that the obtained Li-GPEM has better overall performance than the liquid and blend gel systems used as conductive media in lithium batteries.The ionic conductivity of the fabricated Li-GPEM can reach as high as 2.25×10^(-3) S/cm at 25℃. 展开更多
关键词 poly(vinylidene fluoride-co-hexafluoropro-pylene) lithium ion polyethylene glycol gel electrolyte porous membrane
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部