期刊文献+
共找到360篇文章
< 1 2 18 >
每页显示 20 50 100
Porous-DeepONet:Learning the Solution Operators of Parametric Reactive Transport Equations in Porous Media
1
作者 Pan Huang Yifei Leng +1 位作者 Cheng Lian Honglai Liu 《Engineering》 SCIE EI CAS CSCD 2024年第8期94-103,共10页
Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varyi... Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media. 展开更多
关键词 porous media Reactive transport Solution operator DeepONet Neural network
下载PDF
The impact of heterogeneity and pore network characteristics on single and multi-phase fluid propagation in complex porous media:An X-ray computed tomography study
2
作者 Shohreh Iraji Tales Rodrigues De Almeida +2 位作者 Eddy Ruidiaz Munoz Mateus Basso Alexandre Campane Vidal 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1719-1738,共20页
This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifica... This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifically,high-resolution or micro X-ray computed tomography(CT)imaging techniques were utilized to examine outcrop stromatolite samples of the Lagoa Salgada,considered flow analogous to the Brazilian Pre-salt carbonate reservoirs.The petrophysical results comprised two distinct stromatolite depositional facies,the columnar and the fine-grained facies.By generating pore network model(PNM),the study quantified the relationship between key features of the porous system,including pore and throat radius,throat length,coordination number,shape factor,and pore volume.The study found that the less dense pore network of the columnar sample is typically characterized by larger pores and wider and longer throats but with a weaker connection of throats to pores.Both facies exhibited less variability in the radius of the pores and throats in comparison to throat length.Additionally,a series of core flooding experiments coupled with medical CT scanning was designed and conducted in the plug samples to assess flow propagation and saturation fields.The study revealed that the heterogeneity and presence of disconnected or dead-end pores significantly impacted the flow patterns and saturation.Two-phase flow patterns and oil saturation distribution reveal a preferential and heterogeneous displacement that mainly swept displaced fluid in some regions of plugs and bypassed it in others.The relation between saturation profiles,porosity profiles,and the number of fluid flow patterns for the samples was evident.Only for the columnar plug sample was the enhancement in recovery factor after shifting to lower salinity water injection(SB)observed. 展开更多
关键词 Pore network model Heterogeneous porous media Flow patterns Dead-end pores
下载PDF
Anisotropic dynamic permeability model for porous media
3
作者 PEI Xuehao LIU Yuetian +3 位作者 LIN Ziyu FAN Pingtian MI Liao XUE Liang 《Petroleum Exploration and Development》 SCIE 2024年第1期193-202,共10页
Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was ... Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was verified using pore-scale flow simulation.The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed.In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs,the effect of effective surface porosity on the permeability in all directions is consistent.With the decrease of effective surface porosity,the sensitivity of permeability to strain increases.The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity,while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity.For layered reservoirs with the same initial tortuosity in all directions,the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop.When the tortuosity is less than 1.6,the decrease rate of horizontal permeability is higher than that of vertical permeability,while the opposite is true when the tortuosity is greater than 1.6.This phenomenon cannot be represented by traditional dynamic permeability model.After the verification by experimental data of pore-scale simulation,the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions. 展开更多
关键词 porous media dynamic permeability ANISOTROPY capillary network model TORTUOSITY normal strain flow simulation permeability change characteristics
下载PDF
Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media
4
作者 赵志强 刘金霞 +1 位作者 刘建宇 崔志文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期468-476,共9页
In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por... In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media. 展开更多
关键词 confining pressure pore pressure fluid-saturated porous media multipole borehole acoustic field
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
5
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY Pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Prediction of Porous Media Fluid Flow with Spatial Heterogeneity Using Criss-Cross Physics-Informed Convolutional Neural Networks
6
作者 Jiangxia Han Liang Xue +5 位作者 Ying Jia Mpoki Sam Mwasamwasa Felix Nanguka Charles Sangweni Hailong Liu Qian Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1323-1340,共18页
Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi... Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN. 展开更多
关键词 Physical-informed neural networks(PINN) flow in porous media convolutional neural networks spatial heterogeneity machine learning
下载PDF
A study on the temperature sensitivity of NMR porosity in porous media based on the intensity of magnetization Dedicated to the special issue “Magnetic Resonance in Porous Media”
7
作者 Lu Zhang Lizhi Xiao +4 位作者 Wensheng Wu Guangzhi Liao Yan Zhang Sihui Luo Xinglong Lei 《Magnetic Resonance Letters》 2024年第1期28-39,共12页
The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of th... The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of the measured system due to temperature fluctuations and difference between the temperature of the porous medium and calibration sample.In this study,the effect of temperature was explained based on the thermodynamic theory,and the rules of NMR porosity responses to temperature changes were identified through core physics experiments.In addition,a method for correcting the influence of temperature on NMR porosity measurement was proposed,and the possible factors that may affect its application were also discussed. 展开更多
关键词 NMR porosity Temperature porous media Intensity of magnetization
下载PDF
Flow characteristics and regime transition of aqueous foams in porous media over a wide range of quality,velocity,and surfactant concentration 被引量:1
8
作者 Bin-Fei Li Meng-Yuan Zhang +3 位作者 Zhao-Min Li Anthony Kovscek Yan Xin Bo-Liang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1044-1052,共9页
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T... Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams. 展开更多
关键词 Foam flow regime and transition porous media Pressure gradient Flow velocity Surfactant concentration Foam quality
下载PDF
Computer simulation of Cu:AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM
9
作者 S.A.Abdollahi P.Jalili +4 位作者 B.Jalili H.Nourozpour Y.Safari P.Pasha D.D.Ganji 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期177-187,共11页
Extensive improvements in small-scale thermal systems in electronic circuits,automotive industries,and microcomputers conduct the study of microsystems as essential.Flow and thermic field characteristics of the cohere... Extensive improvements in small-scale thermal systems in electronic circuits,automotive industries,and microcomputers conduct the study of microsystems as essential.Flow and thermic field characteristics of the coherent nanofluid-guided microchannel heat sink are described in this perusal.The porous media approximate was used to search the heat distribution in the expanded sheet and Cu:γ-AlOOH/water.A hybrid blend of Boehme copper and aluminum nanoparticles is evaluated to have a cooling effect on the microchannel heat sink.By using Akbari Ganji and finite element methods,linear and non-linear differential equations as well as simple dimensionless equations have been analyzed.The purpose of this study is to investigate the fluid and thermal parameters of copper hybrid solution added to water,such as Nusselt number and Darcy number so that we can reach the best cooling of the fluid.Also,by installing a piece of fin on the wall of the heat sink,the coefficient of conductive heat transfer and displacement heat transfer with the surrounding air fluid increases,and the efficiency of the system increases.The overall results show that expanding values on the NP(series heat transfer fluid system maximizes performance with temperatures)volume division of copper,as well as boehmite alumina particles,lead to a decrease within the stream velocity of the Cu:AlOOH/water.Increasing the volume fraction of nanoparticles in the hybrid mixture decreases the temperature of the solid surface and the hybrid nanofluid.The Brownian movement improves as the volume percentage of nanoparticles in the hybrid mixture grows,spreading the heat across the environment.As a result,heat transmission rates rise.As the Darcy number increases,the thermal field for solid sections and Cu:AlOOH/water improves. 展开更多
关键词 Finite element method AGM method MICROCHANNEL Heat sink porous media Cu:γ-AlOOH/water
下载PDF
Numerical Approach of a Coupled Pressure-Saturation Model Describing Oil-Water Flow in Porous Media
10
作者 Paula Luna Arturo Hidalgo 《Communications on Applied Mathematics and Computation》 2023年第2期946-964,共19页
Two-phase flow in porous media is a very active field of research,due to its important applications in groundwater pollution,CO_(2)sequestration,or oil and gas production from petroleum reservoirs,just to name a few o... Two-phase flow in porous media is a very active field of research,due to its important applications in groundwater pollution,CO_(2)sequestration,or oil and gas production from petroleum reservoirs,just to name a few of them.Fractional flow equations,which make use of Darcy's law,for describing the movement of two immiscible fluids in a porous medium,are among the most relevant mathematical models in reservoir simulation.This work aims to solve a fractional flow model formed by an elliptic equation,representing the spatial distribution of the pressure,and a hyperbolic equation describing the space-time evolution of water saturation.The numerical solution of the elliptic part is obtained using a finite-element(FE)scheme,while the hyperbolic equation is solved by means of two dif-ferent numerical approaches,both in the finite-volume(FV)framework.One is based on a monotonic upstream-centered scheme for conservation laws(MUSCL)-Hancock scheme,whereas the other makes use of a weighted essentially non-oscillatory(ENO)reconstruc-tion.In both cases,a first-order centered(FORCE)-αnumerical scheme is applied for inter-cell flux reconstruction,which constitutes a new contribution in the field of fractional flow models describing oil-water movement.A relevant feature of this work is the study of the effect of the parameterαon the numerical solution of the models considered.We also show that,in the FORCE-αmethod,when the parameterαincreases,the errors diminish and the order of accuracy is more properly attained,as verified using a manufactured solution technique. 展开更多
关键词 Two-phase flow Reservoir simulation porous media FORCE-α Finite volume
下载PDF
Data inversion of multi-dimensional magnetic resonance in porous media
11
作者 Fangrong Zong Huabing Liu +1 位作者 Ruiliang Bai Petrik Galvosas 《Magnetic Resonance Letters》 2023年第2期127-139,I0004,共14页
Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension all... Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR. 展开更多
关键词 Multi-dimensional MR Data inversion porous media Inverse Laplace transform FOURIERTRANSFORM
下载PDF
A Fractal Orifice-Throat Model for Seepage Characteristics of Multiscale Porous Media
12
作者 Chunling Wang Yan Gao +1 位作者 Lida Zhang Jiaoyan Zhu 《Journal of Mechanics Engineering and Automation》 2023年第5期136-142,共7页
The seepage characteristics of multiscale porous media is of considerable significance in many scientific and engineering fields.The Darcy permeability is one of the key macroscopic physical properties to characterize... The seepage characteristics of multiscale porous media is of considerable significance in many scientific and engineering fields.The Darcy permeability is one of the key macroscopic physical properties to characterize the seepage capacity of porous media.Therefore,based on the statistically fractal scaling law of porous media,fractal geometry is applied to model the multiscale pore structures.And a two-dimensional fractal orifice-throat model with multiscale and tortuous characteristics is proposed for the seepage flow through porous media.The analytical expression for Darcy permeability of porous media is derived,which is validated by comparing with available experimental data.The results show that the Darcy permeability is significantly influenced by porosity,orifice-throat fractal dimension,minimum to maximum diameter ratio,orifice-throat ratio and tortuosity fractal dimension.The present results are helpful for understanding the seepage mechanism of multiscale porous media,and may provide theoretical basis for unconventional oil and gas exploration and development,porous phase transition energy storage composites,CO2 geological sequestration,environmental protection and nuclear waste treatment,etc. 展开更多
关键词 Multiscale porous media fractal geometry Darcy’s law PERMEABILITY orifice-throat model.
下载PDF
Pore structure and liquid flow velocity distribution in water-saturated porous media probed by MRI 被引量:3
13
作者 吴爱祥 刘超 +2 位作者 尹升华 薛振林 陈勋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1403-1409,共7页
Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at th... Magnetic resonance imaging (MRI) was used to probe the structure and flow velocity within the interparticle space of a packed bed of agar beads under water-saturated condition. The images of the velocity field at three different flow rates were obtained. To determine the pore-parameter of the porous media, the internal structure of the bed was also obtained using image processing technique. The results show that the porosity of the sample is 31.28% and the fitting curve for the distribution of pore equivalent diameter follows Gaussian distribution. The velocity profiles do shift as the flow rate varies and the solution flow through the void space is not a homogeneous flow in any pores. The velocity distributions within the pore are roughly parabolic with the local maximum being near the center. About half of the velocity components are in the class of 0-1 cm/s. The frequency of lower velocity components is lower at higher flow rate, but to higher velocity components, it is just the opposite. 展开更多
关键词 magnetic resonance imaging porous media flow velocity POROSITY pore equivalent diameter
下载PDF
Review on the Development of Oil and Gas Flow in Underground Porous Media 被引量:1
14
作者 李军诗 王晓冬 +1 位作者 刘鹏程 侯晓春 《Petroleum Science》 SCIE CAS CSCD 2004年第4期88-94,共7页
Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main facto... Through reviewing the flow theory’s birth and development history in underground porous media and contrasting the mechanics of underground fluids and mechanics of viscous fluids, this paper points out the main factors, which affect the development of the theory on oil and gas porous flow. The development law and development route of the mechanics of fluids in porous media are also summarized in this paper. 展开更多
关键词 porous flow mechanics of fluids in porous media viscous fluids mechanics of ground water petroleum and natural gas engineering REVIEW PROGRESSION
下载PDF
Training image analysis for three-dimensional reconstruction of porous media
15
作者 滕奇志 杨丹 +2 位作者 徐智 李征骥 何小海 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期415-421,共7页
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop... In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics. 展开更多
关键词 three-dimensional reconstruction training image stationarity porous media multiple-point statistics
下载PDF
Gas Condensate Two Phase Flow Performance in Porous Media Considering Capillary Number and Non-Darcy Effects
16
作者 覃斌 李相方 程时清 《Petroleum Science》 SCIE CAS CSCD 2004年第3期49-55,共7页
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne... Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods. 展开更多
关键词 Gas condensate two-phase flow porous media capillary number non-Darcy effect
下载PDF
NUMERICAL STUDY ON NATURAL CONVECTION HEAT TRANSFER INSIDE RECTANGULAR ENCLOSURE FILLED WITH ANISOTROPIC POROUS MEDIA
17
作者 张靖周 李立国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期57-63,共7页
Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed num... Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed numerically by applying the Brinkman model-a modified form of Darcy model giving consideration to the viscous effect. The results show that: (1)the permeability ratio (K*=Ky/Kx) is an important factor affecting natural convection heat transfer in the porous media. As K' decreases, the circulation intensity of the natural convectioncells increase significantly, resulting in an enhancement of heat transfer coefficient; (2)the increase of Darcy number (aa=Ky/H2) implies that the viscous effect is more significant. As Da≥10-, there exists a certain difference between the Darcy model and the Brinkman model. It is more significant at a lower permeability ratio. In particalar, with K*≤0. 25, the Nusselt number for Da=10-3 would differ form that of Darcy model up to an amount of 30K. The Darcy flow as depicted by Darcy model is no longer existing and an analysis neglecting the viscous effect will inevitably be of considerable error. 展开更多
关键词 heat transfer porous media natural convection numerical calculation non-Darcy flow
下载PDF
Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media 被引量:10
18
作者 Jiang Guancheng Li Yingying Zhang Min 《Petroleum Science》 SCIE CAS CSCD 2013年第4期515-527,共13页
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent... The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance. 展开更多
关键词 Gas-wetting fluorocarbon copolymer contact angle capillary pressure surface free energy surface property fluid flow in porous media
下载PDF
A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media 被引量:13
19
作者 Hengxin Ren Qinghua Huang Xiaofei Chen 《Earthquake Science》 CSCD 2010年第2期167-176,共10页
Chen's technique of computing synthetic seismograms, which decomposes every vector with a set of basis of orthogonality and completeness before applying the Luco-Apsel-Chen (LAC) generalized reflection and transmis... Chen's technique of computing synthetic seismograms, which decomposes every vector with a set of basis of orthogonality and completeness before applying the Luco-Apsel-Chen (LAC) generalized reflection and transmission coefficients method, is confirmed to be efficient in dealing with elastic waves in multi-layered media and accurate in any frequency range. In this article, we extend Chen's technique to the computation of coupled seismic and electromagnetic (EM) waves in layered porous media. Expanding the involved mechanical and electromagnetic fields by a set of scalar and vector wave-function basis, we obtain the fundamental equations which are subsequently solved by using a recently developed version of the LAC generalized reflection and transmission coefficients method. Our approach and corresponding program is validated by reciprocity tests. We also show a numerical example of a two-layer model with an explosion source. The P-to-EM conversion waves radiated from the interface may have potential application. 展开更多
关键词 synthetic seismogram porous media electrokinetic effect generalized reflection and transmission coefficients
下载PDF
Visualization of CO_2 and oil immiscible and miscible flow processes in porous media using NMR micro-imaging 被引量:9
20
作者 Zhao Yuechao SongYongchen Liu Yu Jiang Lanlan Zhu Ningjun 《Petroleum Science》 SCIE CAS CSCD 2011年第2期183-193,共11页
CO2 flooding is considered not only one of the most effective enhanced oil recovery (EOR) methods, but also an important alternative for geological CO2 storage. In this paper, the visualization of CO2 flooding was s... CO2 flooding is considered not only one of the most effective enhanced oil recovery (EOR) methods, but also an important alternative for geological CO2 storage. In this paper, the visualization of CO2 flooding was studied using a 400 MHz NMR micro-imaging system. For gaseous CO2 immiscible displacement, it was found that CO2 channeling or fingering occurred due to the difference of fluid viscosity and density. Thus, the sweep efficiency was small and the final residual oil saturation was 53.1%. For supercritical CO2 miscible displacement, the results showed that piston-like displacement occurred, viscous fingering and the gravity override caused by the low viscosity and density of the gas was effectively restrained, and the velocity of CO2 front was uniform. The sweep efficiency was so high that the final residual oil saturation was 33.9%, which indicated CO2 miscible displacement could enhance oil recovery more than CO2 immiscible displacement. In addition, the average velocity of CO2 front was evaluated through analyzing the oil saturation profile. A special core analysis method has been applied to in-situ oil saturation data to directly evaluate the local Darcy phase velocities and capillary dispersion rate. 展开更多
关键词 NMR micro-imaging porous media CO2 flooding enhanced oil recovery saturation
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部