Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of a...Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of acetylene. Pd nanoparticles were loaded evenly on PHSNs and TiO2 was loaded on the active Pd particles. The effects of reduction time and temperature and the amount of TiO2 added on catalytic per-formances were investigated by using a fixed-bed micro-reactor. It was found that the catalysts showed better performance when reduced at 300 ℃ than at 500℃, and if reduced for 1 h than 3 h. When the amount of Ti added was 6 times that of Pd, the catalyst showed the highest ethylene selectivity.展开更多
基金the financial support provided by National Natural Science Foundation of China (Nos.20821004 and 50642042)the Key Research Program of Ministry ofEducation of China (No. 108009)+1 种基金CNPC Innovation Foundation (No.06-04D-01-01-02)the Chinese Universities Scientific Fund
文摘Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of acetylene. Pd nanoparticles were loaded evenly on PHSNs and TiO2 was loaded on the active Pd particles. The effects of reduction time and temperature and the amount of TiO2 added on catalytic per-formances were investigated by using a fixed-bed micro-reactor. It was found that the catalysts showed better performance when reduced at 300 ℃ than at 500℃, and if reduced for 1 h than 3 h. When the amount of Ti added was 6 times that of Pd, the catalyst showed the highest ethylene selectivity.