期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Recent progress in porous organic polymers and their application for CO_(2) capture 被引量:2
1
作者 Jiajia Wang Lizhi Wang +4 位作者 You Wang Du Zhang Qin Xiao Jianhan Huang You-Nian Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期91-103,共13页
Carbon capture,storage,and utilization(CCSU)is recognized as an effective method to reduce the excessive emission of CO_(2).Absorption by amine aqueous solutions is considered highly efficient for CO_(2) capture from ... Carbon capture,storage,and utilization(CCSU)is recognized as an effective method to reduce the excessive emission of CO_(2).Absorption by amine aqueous solutions is considered highly efficient for CO_(2) capture from the flue gas because of the large CO_(2) capture capacity and high selectivity.However,it is often limited by the equipment corrosion and the high desorption energy consumption,and adsorption of CO_(2) using solid adsorbents has been receiving more attention in recent years due to its simplicity and high efficiency.More recently,a great number of porous organic polymers(POPs)have been designed and constructed for CO_(2) capture,and they are proven promising solid adsorbents for CO_(2) capture due to their high Brunauer-Emmett-Teller(BET)surface area(SBET),adjustable pore size and easy functionalization.In particular,they usually have rigid skeleton,permanent porosity,and good physiochemical stability.In this review,we have a detailed review for the different POPs developed in recent years,not only the design strategy,but also the special structure for CO_(2) capture.The outlook of the opportunities and challenges of the POPs is also proposed. 展开更多
关键词 porous organic polymers SELECTIVITY ADSORBENT CO_(2)capture
下载PDF
Post-synthesis modification of porous organic polymers with amine: a task-specific microenvironment for CO2 capture 被引量:2
2
作者 Yankai Li Li Yang +2 位作者 Xiang Zhu Jun Hu Honglai Liu 《International Journal of Coal Science & Technology》 EI 2017年第1期50-59,共10页
A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of ... A porous organic polymer named FC-POP was facilely synthesized with extraordinary porosity and excellent stability. Further covalent incorporation of various amines including single amine group, multi-amine groups of diethylenediamine (DETA), and poly-amine groups of polyethylenimine (PEI) to the network gave rise to task-specific modification of the microenvironments to make them more suitable for CO2 capture. As a result, significant boost of CO2 adsorption capacity of 4.5 mmol/g (for FC-POP-CH2DETA, 273 K, 1 bar) and the CO2/N2 selectivity of 736.1 (for FC- POP-CH2PEI) were observed after the post-synthesis amine modifications. Furthermore, these materials can be regener- ated in elevated temperature under vacuum without apparent loss of CO2 adsorption capacity. 展开更多
关键词 porous organic polymers Friedel-Crafts alkylation Post-synthesis Amine modification CO2 capture
下载PDF
Boosting selective C_(2)H_(2)/CH_(4),C_(2)H_(4)/CH_(4) and CO_(2)/CH_(4) adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers
3
作者 Xionghui Liu Jianfeng Du +6 位作者 Yu Ye Yuchuan Liu Shun Wang Xianyu Meng Xiaowei Song Zhiqiang Liang Wenfu Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期64-72,共9页
Nitrogen-rich porous organic polymers have shown great potentials in gas adsorption/separation,photocatalysis,electrochemistry,sensing and so on.Herein,1,2,3-triazole functionalized triazine-based porous organic polym... Nitrogen-rich porous organic polymers have shown great potentials in gas adsorption/separation,photocatalysis,electrochemistry,sensing and so on.Herein,1,2,3-triazole functionalized triazine-based porous organic polymers(TT-POPs)have been synthesized by the copper-catalyzed azide-alkyne cycloaddition(Cu-AAC)polymerization reactions of 1,3,5-tris(4-azidophenyl)-triazine with 1,4-diacetylene benzene and 1,3,5-triacetylenebenzene,respectively.The characterizations of N2 adsorption at 77 K show TTPOPs possess permanent porosity with BET surface areas of 666 m^(2)·g^(-1)(TT-POP-1)and 406 m^(2)·g^(-1)(TT-POP-2).The adsorption capacities of TT-POPs for CO_(2),CH4,C2H2 and C2H4,as well as the selective separation abilities of CO_(2)/N2,CO_(2)/CH_(4),C_(2)H_(2)/CH_(4) and C_(2)H_(4)/CH_(4) were evaluated.The gas selective separation ratio of TT-POPs was calculated by the ideal adsorbed solution theory(IAST)method,wherein the selective separation ratios of C_(2)H_(2)/CH_(4) and C_(2)H_(4)/CH_(4) of TT-POP-2 was 48.4 and 13.6(298 K,0.1 MPa),which is comparable to other adsorbents(5.6–120.6 for C_(2)H_(2)/CH_(4),10–26 for C_(2)H_(4)/CH_(4)).This work shows that the 1,2,3-triazole functionalized triazine-based porous organic polymer has a good application prospect in natural gas purification. 展开更多
关键词 porous organic polymers Triazole CO_(2)capture Light hydrocarbons Gas separation Natural gas purification
下载PDF
A Pd-metalated porous organic polymer as a highly efficient heterogeneous catalyst for C–C couplings 被引量:3
4
作者 戴志锋 陈芳 +4 位作者 孙琦 纪妍妍 王亮 孟祥举 肖丰收 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期54-60,共7页
An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized.This catalyst was applied to various C–C bond-forming reactions,including the Su... An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized.This catalyst was applied to various C–C bond-forming reactions,including the Suzuki,Heck and Sonogashira couplings,and afforded the corresponding products while exhibiting excellent activities and selectivities.More importantly,this catalyst can be readily recycled.These features show that such catalysts have significant potential applications in the future. 展开更多
关键词 porous organic polymer Phenanthroline ligand Carbon–carbon couplings Pd-based heterogeneous catalyst
下载PDF
Porous Rh/BINAP polymers as efficient heterogeneous catalysts for asymmetric hydroformylation of styrene:Enhanced enantioselectivity realized by flexible chiral nanopockets 被引量:5
5
作者 Tao Wang Wenlong Wang +6 位作者 Yuan Lyu Kai Xiong Cunyao Li Hao Zhang Zhuangping Zhan Zheng Jiang Yunjie Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第4期691-698,共8页
A new chiral monomer,(S)‐5,5′‐divinyl‐BINAP,was successfully synthesized and embedded intotwo different porous organic polymers(Poly‐1and Poly‐2).After loading a Rh species,the catalystswere applied for the hete... A new chiral monomer,(S)‐5,5′‐divinyl‐BINAP,was successfully synthesized and embedded intotwo different porous organic polymers(Poly‐1and Poly‐2).After loading a Rh species,the catalystswere applied for the heterogeneous asymmetric hydroformylation of styrene.Compared with thehomogeneous BINAP analogue,the enantioselectivity of Rh/Poly‐1catalyst was drastically increasedby approximately70%.The improved enantioselectivity of the porous Rh/BINAP polymerswas attributed to the presence of flexible chiral nanopockets resulting from the increased bulk ofthe R groups near the catalytic center. 展开更多
关键词 porous organic polymer Heterogeneous catalysis Asymmetric hydroformylation Enhanced enatioselectivity Chiral nanopocket
下载PDF
Chiral BINAP-based hierarchical porous polymers as platforms for efficient heterogeneous asymmetric catalysis 被引量:4
6
作者 Tao Wang Yuan Lyu +5 位作者 Kai Xiong Wenlong Wang Hao Zhang Zhuangping Zhan Zheng Jiang Yunjie Ding 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第5期890-898,共9页
Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based por... Two vinyl‐functionalized chiral2,2'‐bis(diphenylphosphino)‐1,1'‐binaphthyl(BINAP)ligands,(S)‐4,4'‐divinyl‐BINAP and(S)‐5,5'‐divinyl‐BINAP,were successfully synthesized.Chiral BINAP‐based porous organic polymers(POPs),denoted as4‐BINAP@POPs and5‐BINAP@POPs,were efficiently prepared via the copolymerization of vinyl‐functionalized BINAP with divinyl benzene under solvothermal conditions.Thorough characterization using nuclear magnetic resonance spectroscopy,thermogravimetric analysis,extended X‐ray absorption fine structure analysis,and high‐angle annular dark‐field scanning transmission electron microscopy,we confirmed that chiral BINAP groups were successfully incorporated into the structure of the materials considered to contain hierarchical pores.Ru was introduced as a catalytic species into the POPs using different synthetic routes.Systematic investigation of the resultant chiral Ru/POP catalysts for heterogeneous asymmetric hydrogenation ofβ‐keto esters revealed their excellent chiral inducibility as well as high activity and stability.Our work thereby paves a path towards the use of advanced hierarchical porous polymers as solid chiral platforms for heterogeneous asymmetric catalysis. 展开更多
关键词 (S)‐4 4’‐divinyl‐BINAP (S)‐5 5’‐divinyl‐BINAP porous organic polymers supported RUTHENIUM Heterogeneous asymmetric HYDROGENATION β‐keto esters
下载PDF
Luminescent BODIPY-based Porous Organic Polymer for CO_2 Adsorption 被引量:1
7
作者 林益军 YIN Jiafu +2 位作者 LI Xuechao 潘春跃 旷桂超 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期440-445,共6页
Luminescent porous materials have shown various applications such as electronic devices, gas adsorption, energy materials and photocatalysis. Consequently, we designed and prepared a new type borondipyrromethene(BODIP... Luminescent porous materials have shown various applications such as electronic devices, gas adsorption, energy materials and photocatalysis. Consequently, we designed and prepared a new type borondipyrromethene(BODIPY) based porous organic polymer(POP) by using Sonogashira coupling reaction. This POP-1 exhibits high thermal stability with moderate surface area. In addition, POP-1 is highly emissive in a solid state. Due to enrichment of different kinds of heteroatoms in the skeleton of the porous polymer, POP-1 selectively captures carbon dioxide(CO_2) with relative high adsorption selectivity of CO_2/N_2. 展开更多
关键词 porous organic polymer LUMINESCENT boron-dipyrromethene(BODIPY) CO2 ADSORPTION selectively CAPTURE
下载PDF
Ferrocenyl building block constructing porous organic polymer for gas capture and methyl violet adsorption 被引量:1
8
作者 HUANG Jin TAN Zhi-qiang +4 位作者 SU Hui-min GUO Yi-wen LIU Huan LIAO Bo LIU Qing-quan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1247-1261,共15页
Ferrocene-based porous organic polymer(FcPOP) was constructed with ferrocene and porphyrin derivatives as building blocks via Schiff-base coupling. FcPOP was well characterized, and exhibited good thermal stability, h... Ferrocene-based porous organic polymer(FcPOP) was constructed with ferrocene and porphyrin derivatives as building blocks via Schiff-base coupling. FcPOP was well characterized, and exhibited good thermal stability, high porosity, microporous structure, and homogeneous pore size distribution. Ferrocene blocks with highly electron-rich characteristics endowed Fc POP with excellent adsorption capacity of CO2 and methyl violet. The kinetic study indicated adsorption of methyl violet onto FcPOP mainly complied with pesudo-second order model. The maximum adsorption capacity of FcPOP derived from Langmuir isotherm model reached up to 516 mg/g. More importantly, FcPOP could be easily regenerated and repeatedly employed for removal of methyl violet with high efficiency. Overall, FcPOP in the present study highlighted prospective applications in the field of gas capture and dyeing wastewater treatment. 展开更多
关键词 FERROCENE porous organic polymer gas capture dyeing wastewater
下载PDF
Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal
9
作者 Yongbo Liu Zhihao Si +4 位作者 Cong Ren Hanzhu Wu Peng Zhan Yuqing Peng Peiyong Qin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期193-201,共9页
Separation membrane with high flux is generally encouraged in industrial application,because of the tremendous needs for decreasing membrane areas,usage costs and space requirements.The most effective and direct metho... Separation membrane with high flux is generally encouraged in industrial application,because of the tremendous needs for decreasing membrane areas,usage costs and space requirements.The most effective and direct method for obtaining the high flux is to decrease membrane thickness.Polyamide(PA)nanofiltration membrane is conventionally prepared by the direct interfacial polymerization(IP)on substrate surface,and results in a thick PA layer.In this work,we proposed a strategy that constructing triazine-based porous organic polymer(TRZ-POP)as the interlayer to prepare the ultrathin PA nanofiltration membranes.TRZ-POP is firstly deposited on the polyethersulfone substrate,and then the formed TRZ-POP provides more adhesion sites towards PA based on its high specific surface areas.The chemical bonding between terminal amine group of TRZ-POP and the amide group of PA further improves the binding force,and strengthens the stability of PA layer.More importantly,the high porosity of TRZPOP layer causes the higher polymerization of initial PA owning to the stored sufficient amino monomer;and H-bonding interaction between amine groups of TRZ-POP and piperazine(PIP)can astrict the release of PIP.Thus,IP process is controlled,and the thinnest thickness of prepared PA layer is only<15 nm.As expected,PA/TRZ-POP membrane shows a more excellent water flux of 1414 L·m^(-2)·h^(-1)·MPa^(-1)than that of the state-of-the-art nanofiltration membranes,and without sacrificing dye rejection.The build of TRZPOP interlayer develops a new method for obtaining a high-flux nanofiltration membrane. 展开更多
关键词 POLYAMIDE Nanofiltration Interfacial polymerization Triazine-based porous organic polymer
下载PDF
Rational design of new in situ reduction of Ni(II)catalytic system for low-cost and large-scale preparation of porous aromatic frameworks
10
作者 Shanshan Wang Yue Wu +3 位作者 Wenxiang Zhang Hao Ren Guangshan Zhu Heping Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期105-113,共9页
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD... Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr. 展开更多
关键词 adsorption carbon material nickel catalysis porous aromatic framework porous organic polymer
下载PDF
Polarization engineering in porous organic polymers for charge separation efficiency and its applications in photocatalytic aerobic oxidations
11
作者 Kun Wu Pei-Wen Cheng +6 位作者 Xin-Yi Liu Ji Zheng Xiao-Wei Zhu Mo Xie Puxin Weng Weigang Lu Dan Li 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第3期1000-1007,共8页
Photocatalytic aerobic oxidation reactions are largely governed by the efficiency of charge separation and subsequent reactive oxygen species(ROS) generation. Herein, we report a polarization engineering strategy to p... Photocatalytic aerobic oxidation reactions are largely governed by the efficiency of charge separation and subsequent reactive oxygen species(ROS) generation. Herein, we report a polarization engineering strategy to promote the charge separation and ROS generation efficiency by substituting the benzene unit with furan/thiophene in porous organic polymers(POPs). Benefiting from the extent of local polarization, the thiophene-containing POP(JNU-218) exhibits the best photocatalytic performance in aerobic oxidation reactions, with a yield much higher than those for the furan-containing POP(JNU-217) and the benzenecontaining POP(JNU-216). Experimental studies and theoretical calculations reveal that the increase of local polarization can indeed reduce the exciton binding energy, and therefore facilitate the separation of electron-hole pairs. This work demonstrates a viable strategy to tune charge separation and ROS generation efficiency by modulating the dipole moments of the building blocks in porous polymeric organic semiconductors. 展开更多
关键词 porous organic polymer local polarization photocatalytic aerobic oxidation charge separation reactive oxygen species exciton binding energy
原文传递
Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO_(2) under mild conditions 被引量:3
12
作者 Zhifeng Dai Yongquan Tang +7 位作者 Fei Zhang Yubing Xiong Sai Wang Qi Sun Liang Wang Xiangju Meng Leihong Zhao Feng-Shou Xiao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期618-626,共9页
The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for t... The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for this reaction,they typically suffer from disadvantages such as the need for severe reaction conditions,catalyst loss,and large amounts of soluble co-catalysts.On the other hand,the development of heterogeneous catalysts featuring multiple and cooperative active sites,remains challenging and desirable.In this study,we prepared a series of porous organic catalysts(POP-PBnCl-TPPMg-x)via the copolymerization metal-porphyrin compounds and phosphonium salt monomers in various ratios.The resulting materials contain both Lewis-acidic and Lewis-basic active sites.The molecular-level combination of these sites in the same polymer allows these active sites to work synergistically,giving rise to excellent performance in the cycloaddition reaction of CO_(2)with epoxides,under mild conditions(40℃ and 1 atm CO_(2))in the absence of soluble co-catalysts.POP-PBnCl-TPPMg-12 can also efficiently fixate CO_(2)under low-CO_(2)-concentration(15%v/v N2)conditions representative of typical CO_(2)compositions in industrial exhaust gases.More importantly,this catalyst shows excellent recyclability and can easily be separated and reused at least five times while maintaining its activity.In view of their heterogeneous nature and excellent catalytic performance,the obtained catalysts are promising candidates for the transformation of industrially generated CO_(2)into high value-added chemicals. 展开更多
关键词 COPOLYMERIZATION porous organic polymers Binary active sites Carbon dioxide fixation Heterogeneous catalysis
下载PDF
Nitrogen-rich isoindoline-based porous polymer: Promoting knoevenagel reaction at room temperature 被引量:2
13
作者 Shengtai Hou Yunhao Sun +1 位作者 Xueguang Jiang Pengfei Zhang 《Green Energy & Environment》 SCIE CSCD 2020年第4期484-491,共8页
Nitrogen-rich porous organic polymers(POPs)with basic features have already shown promising performance in various organic reactions.But the harsh conditions,tedious synthetic methods and the requirement of specific m... Nitrogen-rich porous organic polymers(POPs)with basic features have already shown promising performance in various organic reactions.But the harsh conditions,tedious synthetic methods and the requirement of specific monomers impede their further application.Herein,we introduce isoindoline chemistry into POP community.An isoindoline formation process between aniline and bromomethylbenzenedcoupling nucleophilic substitution,HBr elimination,and intramolecular cyclization in one pot,is utilized for POPs synthesis.Nitrogen-rich isoindolinebased porous polymers(IPPs)were obtained with specific surface areas up to 408 m^(2) g^(-1).Unexpectedly,mechanochemistry could enable the rapid(3 h)and solid-state synthesis of IPP catalysts.Moreover,this nitrogen-rich catalyst presents excellent activity(isolated yield:99%),scalable ability(up to 14 g per run)and recyclability(five runs)towards the Knoevenagel condensation reaction under mild reaction conditions(water as solvent at room temperature). 展开更多
关键词 porous organic polymers porous basic polymers NITROGEN-DOPED MECHANOCHEMISTRY
下载PDF
Visible-light degradation of azo dyes by imine-linked covalent organic frameworks 被引量:1
14
作者 Hongbo Xue Sen Xiong +1 位作者 Kai Mi Yong Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期194-199,共6页
Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved i... Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved in water.Visible light generates different types of radicals from COFs,and superoxide radicals break N=N bonds in dye molecules,resulting in 100%degradation of azo dyes within 1 h.In contrast,these dyes cannot be degraded by conventionally used photocatalysts,for example,TiO2.Importantly,the COF photocatalysts can be recovered from the dye solutions and re-used to degrade azo dyes for multiple times without loss of degradation efficiency.This work provides an efficient strategy to degrade synthetic dyes,and we expect that COFs with designable structures may use as new photocatalysts for other important applications. 展开更多
关键词 Covalent organic frameworks DYES Photocatalytic degradation porous polymer Water pollution
下载PDF
Highly active and stable porous polymer heterogenous catalysts for decomposition of formic acid to produce H_2
15
作者 Yan Zhang Yuan Lyu +3 位作者 Yuqing Wang Cunyao Li Miao Jiang Yunjie Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第2期147-151,共5页
Formic acid(FA)has attracted extensive attention as a hydrogen storage material.Here,we develop two heterogeneous catalysts based on porous organic polymers(POPs).After loading the Ru species,the catalyst bearing the ... Formic acid(FA)has attracted extensive attention as a hydrogen storage material.Here,we develop two heterogeneous catalysts based on porous organic polymers(POPs).After loading the Ru species,the catalyst bearing the triphenylphosphine ligand showed excellent performance in terms of activity and stability for the decomposition of FA to produce hydrogen. 展开更多
关键词 HETEROGENEOUS porous organic polymer Formic acid DECOMPOSITION Hydrogen
下载PDF
Construction of Ionic Porous Organic Polymers(iPOPs)via Pyrylium Mediated Transformation
16
作者 Shi-Yue Zhang Wei-Tao Gong +4 位作者 Wei-Dong Qu Xiao-Rong Deng Kai-Xun Dong Shu-Guang Zhang Gui-Ling Ning 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第9期958-964,I0006,共8页
Two new ionic porous organic polymers(iPOPs)with different counter anions were successfully fabricated via well-known pyrylium mediated transformation into pyridinium.13C solid-state NMR,XPS,and FTIR were analyzed and... Two new ionic porous organic polymers(iPOPs)with different counter anions were successfully fabricated via well-known pyrylium mediated transformation into pyridinium.13C solid-state NMR,XPS,and FTIR were analyzed and confirmed the formation of pyridinium in the network.Containing charged and aromatic networks,both iPOPs exhibit a high affinity towards toxic hexavalent chromium Cr(Ⅵ)ions.What is more,it has been demonstrated that both CO2 adsorption and Cr(Ⅵ)removal properties can be tuned by simply varying counter anions. 展开更多
关键词 Ionic porous organic polymers PYRYLIUM CO2 adsorption Hexavalent chromium removal Different counter anions
原文传递
Engineering porous organic polymers for carbon dioxide capture 被引量:5
17
作者 Ning Huang Gregory Day +2 位作者 Xinyu Yang Hannah Drake Hong-Cai Zhou 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第8期1007-1014,共8页
As atmospheric CO_2 levels rise, the development of physical or chemical adsorbents for CO_2 capture and separation is of great importance on the way towards a sustainable low-carbon future. Porous organic polymers ar... As atmospheric CO_2 levels rise, the development of physical or chemical adsorbents for CO_2 capture and separation is of great importance on the way towards a sustainable low-carbon future. Porous organic polymers are promising candidates for CO_2 capture materials owing to their structural flexibility, high surface area, and high stability. In this review, we highlight high-performance porous organic polymers for CO_2 capture and summarize the strategies to enhance CO_2 uptake and selectivity, such as increasing surface area, increasing interaction between porous organic polymers and CO_2, and pore surface functionalization. 展开更多
关键词 porous organic polymers C02 capture NANOMATERIALS post-synthesis POLYMER
原文传递
Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds 被引量:5
18
作者 Shuangchun Lu Qingling Liu +6 位作者 Rui Han Miao Guo Jiaqi Shi Chunfeng Song Na Ji Xuebin Lu Degang Ma 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第7期184-203,共20页
Volatile organic compounds(VOCs)with high toxicity and carcinogenicity are emitted from kinds of industries,which endanger human health and the environment.Adsorption is a promising method for the treatment of VOCs du... Volatile organic compounds(VOCs)with high toxicity and carcinogenicity are emitted from kinds of industries,which endanger human health and the environment.Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency.In recent years,activated carbons,zeolites,and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity.However,the hydrophilic nature and low desorption rate of those materials limit their commercial application.Furthermore,the adsorption capacities of VOCs still need to be improved.Porous organic polymers(POPs)with extremely high porosity,structural diversity,and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption.This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs.Moreover,the mechanism of competitive adsorption between water and VOCs on the POPs was discussed.Finally,a concise outlook for utilizing POPs for VOCs adsorption was discussed,noting areas in which further work is needed to develop the next-generation POPs for practical applications. 展开更多
关键词 porous organic polymers Volatile organic compounds Adsorption superiority Competitive adsorption
原文传递
Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene 被引量:4
19
作者 Liuyi Li 《Nano Research》 SCIE EI CAS CSCD 2015年第3期709-721,共13页
Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incor... Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incorporated into CPP-F1 and CPP-F2 to form Pd@CPP-F1 and Pd@CPP-F2, respectively. The interactions between the polymers and palladium are confirmed by solid-state 13C NMR, IR and XPS. Palladium nanoparticles (NPs) are formed after hydrogenation of olefins and nitrobenzene. Palladium NPs in CPP-F1 are well dispersed on the external surface of the polymer, while palladium NPs in CPP-F2 are located in the interior pores and on the external surface. In comparison with NPs in CPP-F1, the dual distribution of palladium NPs in CPP-F2 results in higher selectivity in the hydrogenation of 1,3-cyclohexadiene to cyclohexane. The catalytic systems can be recycled several times without obvious loss of catalytic activity or agglomeration of palladium NPs. Hot filtration, mercury drop tests and ICP analyses suggest that the catalytic systems proceed via a heterogeneous pathway. 展开更多
关键词 porous organic polymers click reaction heterogeneous catalysis PALLADIUM nanoparticles
原文传递
Recent development of efficient electrocatalysts derived from porous organic polymers for oxygen reduction reaction 被引量:3
20
作者 Shuanglong Lu Yinghua Jin +1 位作者 Hongwei Gu Wei Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第8期999-1006,共8页
Porous organic polymers(POPs) have recently emerged as promising candidates for catalyzing oxygen reduction reaction(ORR).Compared to conventional Pt-based ORR catalysts, these newly developed porous materials, includ... Porous organic polymers(POPs) have recently emerged as promising candidates for catalyzing oxygen reduction reaction(ORR).Compared to conventional Pt-based ORR catalysts, these newly developed porous materials, including both non-precious metal based catalysts and metal-free catalysts, are more sustainable and cost-effective. Their porous structures and large surface areas facilitate mass and electron transport and boost the ORR kinetics. This mini-review will give a brief summary of recent development of POPs as electrocatalysts for the ORR. Some design principles, different POP structures, key factors for their ORR catalytic performance, and outlook of POP materials will be discussed. 展开更多
关键词 porous organic polymers oxygen reduction reaction ELECTROCATALYSIS METALLOPORPHYRIN
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部