A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxia...A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxial tensile test was conducted to investigate the effect of fiber length and natural aging factor on the tensile properties of the PMFSS. Results indicated that, under given stress, the increase of fiber length helped reinforce the tensile strength. The elongation of the PMFSS with medium length fiber of 15 mm exhibited the optimal performance, reaching about 13.5%. After natural aging treatment for a month, the tensile strength of PMFSS significantly decreased, but the change of elongation was negligible except for the one with the shortest fiber length of 5 mm, whose elongation was effectively improved. The morphological fracture features of PMFSSs were also characterized.展开更多
An analysis is carried out for dual solutions of the boundary layer flow of Maxwell fluid over a permeable shrinking sheet. In the investigation, a constant wall mass transfer is considered. With the help of similarit...An analysis is carried out for dual solutions of the boundary layer flow of Maxwell fluid over a permeable shrinking sheet. In the investigation, a constant wall mass transfer is considered. With the help of similarity transformations, the governing partial differential equations(PDEs) are converted into a nonlinear self-similar ordinary differential equation(ODE). For the numerical solution of transformed self-similar ODE, the shooting method is applied. The study reveals that the steady flow of Maxwell fluid is possible with a smaller amount of imposed mass suction compared with the viscous fluid flow. Dual solutions for the velocity distribution are obtained. Also, the increase of Deborah number reduces the boundary layer thickness for both solutions.展开更多
Hexagonal porous Nb2O5 was synthesized for the first time via a facile solid-state reaction.The structure and electrochemical properties have been optimized through tuning heating temperature.X-ray diffraction results...Hexagonal porous Nb2O5 was synthesized for the first time via a facile solid-state reaction.The structure and electrochemical properties have been optimized through tuning heating temperature.X-ray diffraction results indicate that pseudo hexagonal Nb2O5(TT-Nb2O5)and orthorhombic Nb2O5 have been synthesized at different temperatures.Hexagonal sheet and porous structure of Nb2O5 were characterized by scanning electron microscopy and N2-adsorption-desorption isotherms.The as-prepared TT-Nb2O5(heated at 600℃)shows the best performance with a remarkable charge capacity of 178 mA∙h/g at 0.2C,which is higher than that of T-Nb2O5.Even at 20℃,TT-Nb2O5 offers unprecedented rate capability up to 86 mA∙h/g.The high rate capacity is due to pseudocapacitive Li+intercalation mechanism of TT-Nb2O5.The reported results demonstrate that Nb2O5 with good crystal structure and high specific surface area is a powerful composite design for high-rate and safe anode materials.展开更多
The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into o...The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into ordinary differential equations (ODEs) by appropriate transformations. The transformed equations are solved successfully by a modern and powerful technique. The effects of the emerging parameters on the flow and heat transfer characteristics are studied and examined. The values of the skin friction coefficient and the local Nusselt number are tabulated and analyzed.展开更多
基金Projects(51475172,51275180,51375177) supported by the National Natural Science Foundation of ChinaProject(S2013040016899) supported by the Natural Science Foundation of Guangdong Province,ChinaProjects(2013ZM0003,2013ZZ017) supported by the Fundamental Research Funds for the Central Universities,South China University of Technology,China
文摘A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxial tensile test was conducted to investigate the effect of fiber length and natural aging factor on the tensile properties of the PMFSS. Results indicated that, under given stress, the increase of fiber length helped reinforce the tensile strength. The elongation of the PMFSS with medium length fiber of 15 mm exhibited the optimal performance, reaching about 13.5%. After natural aging treatment for a month, the tensile strength of PMFSS significantly decreased, but the change of elongation was negligible except for the one with the shortest fiber length of 5 mm, whose elongation was effectively improved. The morphological fracture features of PMFSSs were also characterized.
基金the financial support of National Board for Higher Mathematics(NBHM),DAE,Mumbai,Indiapartially supported by Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia
文摘An analysis is carried out for dual solutions of the boundary layer flow of Maxwell fluid over a permeable shrinking sheet. In the investigation, a constant wall mass transfer is considered. With the help of similarity transformations, the governing partial differential equations(PDEs) are converted into a nonlinear self-similar ordinary differential equation(ODE). For the numerical solution of transformed self-similar ODE, the shooting method is applied. The study reveals that the steady flow of Maxwell fluid is possible with a smaller amount of imposed mass suction compared with the viscous fluid flow. Dual solutions for the velocity distribution are obtained. Also, the increase of Deborah number reduces the boundary layer thickness for both solutions.
基金Projects(51974137,51774150)supported by the National Natural Science Foundation of ChinaProject(2020M671361)supported by China Postdoctoral Science Foundation。
文摘Hexagonal porous Nb2O5 was synthesized for the first time via a facile solid-state reaction.The structure and electrochemical properties have been optimized through tuning heating temperature.X-ray diffraction results indicate that pseudo hexagonal Nb2O5(TT-Nb2O5)and orthorhombic Nb2O5 have been synthesized at different temperatures.Hexagonal sheet and porous structure of Nb2O5 were characterized by scanning electron microscopy and N2-adsorption-desorption isotherms.The as-prepared TT-Nb2O5(heated at 600℃)shows the best performance with a remarkable charge capacity of 178 mA∙h/g at 0.2C,which is higher than that of T-Nb2O5.Even at 20℃,TT-Nb2O5 offers unprecedented rate capability up to 86 mA∙h/g.The high rate capacity is due to pseudocapacitive Li+intercalation mechanism of TT-Nb2O5.The reported results demonstrate that Nb2O5 with good crystal structure and high specific surface area is a powerful composite design for high-rate and safe anode materials.
文摘The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into ordinary differential equations (ODEs) by appropriate transformations. The transformed equations are solved successfully by a modern and powerful technique. The effects of the emerging parameters on the flow and heat transfer characteristics are studied and examined. The values of the skin friction coefficient and the local Nusselt number are tabulated and analyzed.