The flexibility of molecular catalysts is highly coveted for the electrochemical reduction of carbon dioxide(CO_(2)) to carbon monoxide(CO) in both homogeneous and heterogeneous systems.While the electrocatalytic acti...The flexibility of molecular catalysts is highly coveted for the electrochemical reduction of carbon dioxide(CO_(2)) to carbon monoxide(CO) in both homogeneous and heterogeneous systems.While the electrocatalytic activity of molecular catalysts has been widely studied in H-cells;their less studied capabilities in more efficient flow cell reactors have the potential to rival that of heterogeneous catalysts.In this work,a comparative study of amino functionalized iron-tetraphenylporphyrins(amino-Fe-TPPs) immobilized onto carbonaceous materials in both H-cells and flow cells was conducted to selectively reduce CO_(2) to CO.In a flow cell set up operating in alkaline media,the resulting hybrid catalyst exhibits 87% faradaic efficiency(FE) with extraordinary current density(j) of 119 mA/cm^(2) and turnover frequency(TOF) of 14 s^(-1) at-1.0 V vs.RHE.This remarkable catalytic activity was achieved through thoughtful combination of molecular and flow cell design that provides an effective strategy for future immobilized heterogeneous approaches toward CO_(2) reduction reactions(CO_(2) RRs).展开更多
Hydrogen evolution in the presence of atmospheric level of oxygen is a significant barrier in the quest for an alternative,sustainable and green source of energy to counter the depleting fossil fuel sources and increa...Hydrogen evolution in the presence of atmospheric level of oxygen is a significant barrier in the quest for an alternative,sustainable and green source of energy to counter the depleting fossil fuel sources and increasing global warming due to fossil fuel burning.Oxygen reduction is thermodynamically more favourable than proton reduction and it often produces reactive oxygenated species upon partial reduction which deactivates the catalyst.Thus,catalyst development is required for efficient proton reduction in the presence of oxygen.Here,we demonstrate an iron porphyrin having triazole containing 2nd sphere hydrogen bonding residues appended with redox active ferrocene moieties(α4-Tetra-2-(3-ferrocenyl-1,2,3-triazolyl)phenylporphyrin(FeFc4))as a bifunctional catalyst for fast and selective oxygen reduction to water and thus,preventing the proton reduction by the same catalyst from oxidative stress.Fe(0)is the active species for proton reduction in these iron porphyrin class of complexes and it is observed that the kinetics of proton reduction at Fe(0)state occurs at much faster rate than O2 reduction and thus,paving the way for selective proton reduction in the presence of oxygen.展开更多
The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride ...The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.展开更多
The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali...The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts.展开更多
Iron porphyrins have high activity and selectivity for electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in nonaqueous solutions,but they usually display poor or moderate selectivity for CO_(2)RR in aqueous solutions...Iron porphyrins have high activity and selectivity for electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in nonaqueous solutions,but they usually display poor or moderate selectivity for CO_(2)RR in aqueous solutions because of the competitive hydrogen evolution reaction.Using water as the electrocatalytic reaction solvent is more favored because not only it is cheap,green and abundant but also it can sufficiently provide protons required for CO_(2)RR.Therefore,developing Fe porphyrins as electrocatalysts for efficient and selective CO_(2)RR in aqueous solutions is of both fundamental and practical significance.Herein,we report the design and synthesis of Fe porphyrin 1 with an appended guanidyl group and its electrocatalytic features for CO_(2)RR in both nonaqueous and aqueous solutions.In acetonitrile,Fe porphyrin 1 and its guanidyl-free analogue,tetrakis(3,4,5-trimethoxyphenyl)porphyrin 2,are both efficient for electrocatalytic CO_(2)-to-CO conversion,but the turnover frequency with 1(3.9´10^(5)s^(-1))is one order of magnitude larger than that with 2(1.7´10^(4)s^(-1)),showing the critical role of the appended guanidyl group in improving electrocatalytic CO_(2)RR activity.More importantly,in 0.1 mol L^(-1)KHCO_(3)aqueous solutions,1 showed very high selectivity for electrocatalytic CO_(2)-to-CO conversion with a Faradaic efficiency of 96%,while 2 displayed a Faradaic efficiency of 65%for the CO_(2)-to-CO conversion.This work is of significance to show the effect of appended guanidyl group on improving both activity and selectivity of Fe porphyrins for CO_(2)RR electrocatalysis.展开更多
Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorpt...Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorption-desorption,thermogravimetry,high-resolution transmission electron microscopy,and Raman and X-ray photoelectron spectroscopy.The selective oxidation of ethylbenzene with molecular oxygen under a solvent-free condition was carried out to explore the catalytic performance of the M-N-Cs,which exhibited different catalytic performance.That was ascribed to the difference in M(Co,Fe,Mn) and different graphitization degree forming during the heating process,in which M(Co,Fe,Mn) might have different catalytic activity on the formation of the M-N-C catalyst.All the M-N-C composites had remarkable recyclability in the selective oxidation of ethylbenzene.展开更多
The film by tetraphenylporphyrin ((TPP )H2) vapor deposinon on iron was investigatedby means of XPS, SEM and visible spectroscopy. N(1s) binding energy characteristic of (TPP)H2was gained directly from the deposited s...The film by tetraphenylporphyrin ((TPP )H2) vapor deposinon on iron was investigatedby means of XPS, SEM and visible spectroscopy. N(1s) binding energy characteristic of (TPP)H2was gained directly from the deposited samples. N(1s) binding energy of the surface was greatlychanged after the deposited sample was washed with solvent. It is indicated that the deposited filmis composed of an outer-layer of physically adsorbed (TPP)H2, and an inner-layer of chemicallymodified (TPP)H2.展开更多
A new iron(III)porphyrin acrylate-styrene copo-lymer,P[(PorFe)A-S],was synthesized by the reaction of iron(III)porphyrin acrylate with styrene and characterized by UV-Vis,Infrared spectra(IR),inductively coupled plasm...A new iron(III)porphyrin acrylate-styrene copo-lymer,P[(PorFe)A-S],was synthesized by the reaction of iron(III)porphyrin acrylate with styrene and characterized by UV-Vis,Infrared spectra(IR),inductively coupled plasma-atomic emission spectrometry(ICP)and molecular weight determination.Its catalytic activity in the hydroxylation of cyclohexane for model cytochrome P450 in the P[(PorFe)A-S]-O_(2)–ascrobate-thiosalicylic acid system has been studied.It was found that the P[(PorFe)A-S]has a higher catalytic activity than non-supported iron(III)porphyrin and its high catalytic activity remained in reuse.The catalytic activity of P[(PorFe)A-S]was discussed in the view of the microenvi-ronment of iron(III)porphyrin.It is proposed that the cata-lytic activity of the P[(PorFe)A-S]may be further enhanced by construction of a homophase catalytic system containing the iron(III)porphyrin acrylate-styrene copolymer.展开更多
Studies of electronic transfer reaction involving iron porphyrins are of evident interest because of their importance as biological electronic transfer agents. The electrochemical property of iron porphyrin in nonaque...Studies of electronic transfer reaction involving iron porphyrins are of evident interest because of their importance as biological electronic transfer agents. The electrochemical property of iron porphyrin in nonaqueous media has been extensively investigated by Kadish et al. This note reports the electrochemical behavior of iron porphyrin (Fe-TPPS) in HAc-NaAc buffer solution (3.5【pH【4.2). The reduction of Fe-TPPS gives a sharp展开更多
Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is st...Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe;O;with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm;and shows good stability in the 1 M KOH electrolyte solution.展开更多
The effects of iron phthalocyanine (FePc) and cobalt porphyrin (CoPp) on inner pressure and cycle behavior of sealed Ni-MH batteries were investigated in this study. The morphology of battery elec- trode was observed ...The effects of iron phthalocyanine (FePc) and cobalt porphyrin (CoPp) on inner pressure and cycle behavior of sealed Ni-MH batteries were investigated in this study. The morphology of battery elec- trode was observed by SEM. The electrochemical impedance spectroscopy of floating-charge/dis- charge battery was also measured. Experimental results show that the addition of FePc or CoPp to the alloy electrode is an effective approach to decrease the internal pressure of battery during the process of charge and overcharge. In contrast to CoPp, the battery with FePc exhibits a slower capacity decay and a smaller overpotential at the same charge-discharge rate. As an electrocatalyst, FePc may more effectively speed up the reduction of oxygen, and decrease its reduction potential. As a result, the charge process is accelerated, the gas evolution is reduced and the pulverization of electrode materials is slowed down.展开更多
We report the activation energy, ΔEa, for the quantum yield in thermally assisted photoelectron emission(TAPE) under 210-nm-wavelength light irradiation, and the associated X-ray photoelectron spectroscopy(XPS) resul...We report the activation energy, ΔEa, for the quantum yield in thermally assisted photoelectron emission(TAPE) under 210-nm-wavelength light irradiation, and the associated X-ray photoelectron spectroscopy(XPS) results. Samples were cleaned only in acetone and scratched in air, water, methanol, ethanol, acetone, benzene, and cyclohexane. Glow curves, describing the temperature dependence of photoelectron emission(PE) quantum yield(emitted electrons/photon), Y, were obtained. A simple method of determining ΔEa using Y, called YGC, at seven temperatures up to 353 °C, for the same Y glow curve, was proposed. The ΔEa obtained using this method was almost the same as that obtained from Y for seven stationary temperatures(YST). For scratched samples, the TAPE was measured over two cycles of temperature increase and subsequent decrease(Up1, Down1 and Up2, Down2 scans) in the 25–339 °C range, and ΔE_a was obtained from YGC. The Arrhenius plot was approximated by a straight line, although a convex swelling peak appeared in the Up1 scan. ΔE_(aUp1) was in the 0.212–0.035 eV range, depending on the environment in which scratching was performed; ΔE_(aUp1) for water was much higher than that for acetone. This was explained in terms of the mode of the acid–base interaction between the liquid molecules and the hydroxyl group of Fe–OH. The values of ΔE_(aDown1), ΔEa Up2, and ΔE_(aDown2) were in the 0.038–0.012 eV range. The total count of electrons emitted during the Up1 and Up2 scans was found to decrease with increasing ΔE_(aUp1) and ΔE_(aUp2), respectively. ΔE_(aUp2) was found to increase with increasing presence of the FeO component in the analyzed Fe oxides. The convex swelling peak was attributed to the removal of carbon materials from the scratched surface and the effect of the increased electron density of the surface hydroxyl group of FeOH under the light irradiation.展开更多
基金supported by NSERC DG 2016-06122 and 201606589 through Discovery Grants to HBK and X.A.Z.,respectivelyby the Canada Foundation for Innovation,Canada Research Chair,and the Ontario Research Fund。
文摘The flexibility of molecular catalysts is highly coveted for the electrochemical reduction of carbon dioxide(CO_(2)) to carbon monoxide(CO) in both homogeneous and heterogeneous systems.While the electrocatalytic activity of molecular catalysts has been widely studied in H-cells;their less studied capabilities in more efficient flow cell reactors have the potential to rival that of heterogeneous catalysts.In this work,a comparative study of amino functionalized iron-tetraphenylporphyrins(amino-Fe-TPPs) immobilized onto carbonaceous materials in both H-cells and flow cells was conducted to selectively reduce CO_(2) to CO.In a flow cell set up operating in alkaline media,the resulting hybrid catalyst exhibits 87% faradaic efficiency(FE) with extraordinary current density(j) of 119 mA/cm^(2) and turnover frequency(TOF) of 14 s^(-1) at-1.0 V vs.RHE.This remarkable catalytic activity was achieved through thoughtful combination of molecular and flow cell design that provides an effective strategy for future immobilized heterogeneous approaches toward CO_(2) reduction reactions(CO_(2) RRs).
文摘Hydrogen evolution in the presence of atmospheric level of oxygen is a significant barrier in the quest for an alternative,sustainable and green source of energy to counter the depleting fossil fuel sources and increasing global warming due to fossil fuel burning.Oxygen reduction is thermodynamically more favourable than proton reduction and it often produces reactive oxygenated species upon partial reduction which deactivates the catalyst.Thus,catalyst development is required for efficient proton reduction in the presence of oxygen.Here,we demonstrate an iron porphyrin having triazole containing 2nd sphere hydrogen bonding residues appended with redox active ferrocene moieties(α4-Tetra-2-(3-ferrocenyl-1,2,3-triazolyl)phenylporphyrin(FeFc4))as a bifunctional catalyst for fast and selective oxygen reduction to water and thus,preventing the proton reduction by the same catalyst from oxidative stress.Fe(0)is the active species for proton reduction in these iron porphyrin class of complexes and it is observed that the kinetics of proton reduction at Fe(0)state occurs at much faster rate than O2 reduction and thus,paving the way for selective proton reduction in the presence of oxygen.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20443002) and the Science Foundations of Henan Province for 0utstanding Young Scientists (No.0612002600)
文摘The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.
文摘The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts.
文摘Iron porphyrins have high activity and selectivity for electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in nonaqueous solutions,but they usually display poor or moderate selectivity for CO_(2)RR in aqueous solutions because of the competitive hydrogen evolution reaction.Using water as the electrocatalytic reaction solvent is more favored because not only it is cheap,green and abundant but also it can sufficiently provide protons required for CO_(2)RR.Therefore,developing Fe porphyrins as electrocatalysts for efficient and selective CO_(2)RR in aqueous solutions is of both fundamental and practical significance.Herein,we report the design and synthesis of Fe porphyrin 1 with an appended guanidyl group and its electrocatalytic features for CO_(2)RR in both nonaqueous and aqueous solutions.In acetonitrile,Fe porphyrin 1 and its guanidyl-free analogue,tetrakis(3,4,5-trimethoxyphenyl)porphyrin 2,are both efficient for electrocatalytic CO_(2)-to-CO conversion,but the turnover frequency with 1(3.9´10^(5)s^(-1))is one order of magnitude larger than that with 2(1.7´10^(4)s^(-1)),showing the critical role of the appended guanidyl group in improving electrocatalytic CO_(2)RR activity.More importantly,in 0.1 mol L^(-1)KHCO_(3)aqueous solutions,1 showed very high selectivity for electrocatalytic CO_(2)-to-CO conversion with a Faradaic efficiency of 96%,while 2 displayed a Faradaic efficiency of 65%for the CO_(2)-to-CO conversion.This work is of significance to show the effect of appended guanidyl group on improving both activity and selectivity of Fe porphyrins for CO_(2)RR electrocatalysis.
基金supported by the National Natural Science Foundation of China (21103045, 1210040, 1103312)State Key Laboratory of Heavy Oil at China University of Petroleum (SKCHOP201504)Key Laboratory of Mineralogy and Metallogeny of the Chinese Academy of Sciences at Guangzhou Institute of Geochemistry(KLMM20150103)~~
文摘Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorption-desorption,thermogravimetry,high-resolution transmission electron microscopy,and Raman and X-ray photoelectron spectroscopy.The selective oxidation of ethylbenzene with molecular oxygen under a solvent-free condition was carried out to explore the catalytic performance of the M-N-Cs,which exhibited different catalytic performance.That was ascribed to the difference in M(Co,Fe,Mn) and different graphitization degree forming during the heating process,in which M(Co,Fe,Mn) might have different catalytic activity on the formation of the M-N-C catalyst.All the M-N-C composites had remarkable recyclability in the selective oxidation of ethylbenzene.
文摘The film by tetraphenylporphyrin ((TPP )H2) vapor deposinon on iron was investigatedby means of XPS, SEM and visible spectroscopy. N(1s) binding energy characteristic of (TPP)H2was gained directly from the deposited samples. N(1s) binding energy of the surface was greatlychanged after the deposited sample was washed with solvent. It is indicated that the deposited filmis composed of an outer-layer of physically adsorbed (TPP)H2, and an inner-layer of chemicallymodified (TPP)H2.
基金supported by the National Natural Science Foundation of China(Grant No.29771034)the Natural Science Foundation of Guangdong Province of China(Grant No.970152).
文摘A new iron(III)porphyrin acrylate-styrene copo-lymer,P[(PorFe)A-S],was synthesized by the reaction of iron(III)porphyrin acrylate with styrene and characterized by UV-Vis,Infrared spectra(IR),inductively coupled plasma-atomic emission spectrometry(ICP)and molecular weight determination.Its catalytic activity in the hydroxylation of cyclohexane for model cytochrome P450 in the P[(PorFe)A-S]-O_(2)–ascrobate-thiosalicylic acid system has been studied.It was found that the P[(PorFe)A-S]has a higher catalytic activity than non-supported iron(III)porphyrin and its high catalytic activity remained in reuse.The catalytic activity of P[(PorFe)A-S]was discussed in the view of the microenvi-ronment of iron(III)porphyrin.It is proposed that the cata-lytic activity of the P[(PorFe)A-S]may be further enhanced by construction of a homophase catalytic system containing the iron(III)porphyrin acrylate-styrene copolymer.
基金Project supported by the National Natural Science Foundation of China.
文摘Studies of electronic transfer reaction involving iron porphyrins are of evident interest because of their importance as biological electronic transfer agents. The electrochemical property of iron porphyrin in nonaqueous media has been extensively investigated by Kadish et al. This note reports the electrochemical behavior of iron porphyrin (Fe-TPPS) in HAc-NaAc buffer solution (3.5【pH【4.2). The reduction of Fe-TPPS gives a sharp
基金supported by the Human Resources Development program(no.20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Grant funded by the Korea government Ministry of Trade,Industry and Energysupported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT and Future Planning(NRF-2015R1A2A2A01006856)
文摘Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe;O;with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm;and shows good stability in the 1 M KOH electrolyte solution.
基金Supported by the National Key Basic Research and Development Program (Grand No. 2002CB211800)the National Key Program for Basic Research of China (Grant No. 2001CCA05000)
文摘The effects of iron phthalocyanine (FePc) and cobalt porphyrin (CoPp) on inner pressure and cycle behavior of sealed Ni-MH batteries were investigated in this study. The morphology of battery elec- trode was observed by SEM. The electrochemical impedance spectroscopy of floating-charge/dis- charge battery was also measured. Experimental results show that the addition of FePc or CoPp to the alloy electrode is an effective approach to decrease the internal pressure of battery during the process of charge and overcharge. In contrast to CoPp, the battery with FePc exhibits a slower capacity decay and a smaller overpotential at the same charge-discharge rate. As an electrocatalyst, FePc may more effectively speed up the reduction of oxygen, and decrease its reduction potential. As a result, the charge process is accelerated, the gas evolution is reduced and the pulverization of electrode materials is slowed down.
基金the Ministry of Education,Culture,Sports,Science and Technology of Japan for supporting this work
文摘We report the activation energy, ΔEa, for the quantum yield in thermally assisted photoelectron emission(TAPE) under 210-nm-wavelength light irradiation, and the associated X-ray photoelectron spectroscopy(XPS) results. Samples were cleaned only in acetone and scratched in air, water, methanol, ethanol, acetone, benzene, and cyclohexane. Glow curves, describing the temperature dependence of photoelectron emission(PE) quantum yield(emitted electrons/photon), Y, were obtained. A simple method of determining ΔEa using Y, called YGC, at seven temperatures up to 353 °C, for the same Y glow curve, was proposed. The ΔEa obtained using this method was almost the same as that obtained from Y for seven stationary temperatures(YST). For scratched samples, the TAPE was measured over two cycles of temperature increase and subsequent decrease(Up1, Down1 and Up2, Down2 scans) in the 25–339 °C range, and ΔE_a was obtained from YGC. The Arrhenius plot was approximated by a straight line, although a convex swelling peak appeared in the Up1 scan. ΔE_(aUp1) was in the 0.212–0.035 eV range, depending on the environment in which scratching was performed; ΔE_(aUp1) for water was much higher than that for acetone. This was explained in terms of the mode of the acid–base interaction between the liquid molecules and the hydroxyl group of Fe–OH. The values of ΔE_(aDown1), ΔEa Up2, and ΔE_(aDown2) were in the 0.038–0.012 eV range. The total count of electrons emitted during the Up1 and Up2 scans was found to decrease with increasing ΔE_(aUp1) and ΔE_(aUp2), respectively. ΔE_(aUp2) was found to increase with increasing presence of the FeO component in the analyzed Fe oxides. The convex swelling peak was attributed to the removal of carbon materials from the scratched surface and the effect of the increased electron density of the surface hydroxyl group of FeOH under the light irradiation.