This paper studies discrete investment portfolio model that the objective function is utility function. According to a hybrid branch-and-bound method based on Lagrangian relaxation and continuous relaxation, the paper...This paper studies discrete investment portfolio model that the objective function is utility function. According to a hybrid branch-and-bound method based on Lagrangian relaxation and continuous relaxation, the paper analyzes the question using the real statistical data. The results indicate that discrete investment portfolio model really has its guidance in the actual investment.展开更多
Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance mo...Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model. By introducing a set of constraint constants to measure uncertainty degree of the estimated expected return,it built the max-min model of multi-prior portfolio,and utilized the Lagrange method to obtain the closed-form solution of the model,which was compared with the mean-variance model and the minimum-variance model; then,an empirical study was done based on the monthly returns over the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index. Results showed,the weight of multi-prior portfolio was a weighted average of the weight of mean-variance portfolio and that of minimumvariance portfolio; the steady of multi-prior portfolio was strengthened compared with the mean-variance portfolio; the performance of multi-prior portfolio was greater than that of minimum-variance portfolio. The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants.展开更多
In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial ...In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.展开更多
In this paper, a bivariate stochastic process with Poisson postulates has been considered to model the incomings, outgoings and mutual transfers of investments between and within the portfolios during an epoch of time...In this paper, a bivariate stochastic process with Poisson postulates has been considered to model the incomings, outgoings and mutual transfers of investments between and within the portfolios during an epoch of time “t”. Stochastic differential equations were obtained from the simple differential difference equations during the epoch of time “Δt”. The notion of bivariate linear birth, death and migration process has been utilized for measuring various statistical characteristics among the investments of Long and Short terms. All possible fluctuations in the investment flow have been considered to explore more meaningful assumptions with contemporary marketing environments. Mathematical relations for proposed statistical measures such as average sizes and variances of short term and long-term investments along with the correlation coefficient between them are derived after obtaining the related differential equations. Numerical illustrations were provided for better understanding of the developed models with practitioner’s point of view.展开更多
Mean-variance portfolio optimization models are sensitive to uncertainty in risk-return estimates,which may result in poor out-of-sample performance.In particular,the estimates may suffer when the number of assets con...Mean-variance portfolio optimization models are sensitive to uncertainty in risk-return estimates,which may result in poor out-of-sample performance.In particular,the estimates may suffer when the number of assets considered is high and the length of the return time series is not sufficiently long.This is precisely the case in the cryptocur-rency market,where there are hundreds of crypto assets that have been traded for a few years.We propose enhancing the mean-variance(MV)model with a pre-selection stage that uses a prototype-based clustering algorithm to reduce the number of crypto assets considered at each investment period.In the pre-selection stage,we run a prototype-based clustering algorithm where the assets are described by variables representing the profit-risk duality.The prototypes of the clustering partition are auto-matically examined and the one that best suits our risk-aversion preference is selected.We then run the MV portfolio optimization with the crypto assets of the selected cluster.The proposed approach is tested for a period of 17 months in the whole cryp-tocurrency market and two selections of the cryptocurrencies with the higher market capitalization(175 and 250 cryptos).We compare the results against three methods applied to the whole market:classic MV,risk parity,and hierarchical risk parity methods.We also compare our results with those from investing in the market index CCI30.The simulation results generally favor our proposal in terms of profit and risk-profit financial indicators.This result reaffirms the convenience of using machine learning methods to guide financial investments in complex and highly-volatile environments such as the cryptocurrency market.展开更多
To improve the enterprise resource utilization and shorten the cycle of the whole project portfolio, a scheduling model based on Design Structure Matrix (DSM) is built. By setting the project activity weight index s...To improve the enterprise resource utilization and shorten the cycle of the whole project portfolio, a scheduling model based on Design Structure Matrix (DSM) is built. By setting the project activity weight index system and calculating the activity weight for the project portfolio, the constraint relationship between project portfolio information and resource utilization, as the two dimensions of the DSM, are fully reflected in the sched- ule model to determine the order of these activities of project portfolio. A project portfolio example is given to il- lustrate the applicability and effectiveness of the schedule model.展开更多
Aiming at constructing the multi-knapsack model of collaborative portfolio configurations in multi-strategy oriented, the hybrid evolutionary algorithm was designed based on greedy method, combining with the organizat...Aiming at constructing the multi-knapsack model of collaborative portfolio configurations in multi-strategy oriented, the hybrid evolutionary algorithm was designed based on greedy method, combining with the organization of the multiple strategical guidance and multi-knapsack model. Furthermore, the organizing resource utility and risk management of portfolio were considered. The experiments were conducted on three main technological markets which contain communication, transportation and industry. The results demonstrated that the proposed model and algorithm were feasible and reliable.展开更多
The hesitant fuzzy set(HFS) is an important tool to deal with uncertain and vague information.In equipment system portfolio selection, the index attribute of the equipment system may not be expressed by precise data;i...The hesitant fuzzy set(HFS) is an important tool to deal with uncertain and vague information.In equipment system portfolio selection, the index attribute of the equipment system may not be expressed by precise data;it is usually described by qualitative information and expressed as multiple possible values.We propose a method of equipment system portfolio selection under hesitant fuzzy environment.The hesitant fuzzy element(HFE) is used to describe the index and attribute values of the equipment system.The hesitation degree of HFEs measures the uncertainty of the criterion data of the equipment system.The hesitant fuzzy grey relational analysis(GRA) method is used to evaluate the score of the equipment system, and the improved HFE distance measure is used to fully consider the influence of hesitation degree on the grey correlation degree.Based on the score and hesitation degree of the equipment system,two portfolio selection models of the equipment system and an equipment system portfolio selection case is given to illustrate the application process and effectiveness of the method.展开更多
This paper describes a model in which a representative investor's preference depends on both the consumption history consumption and his wealth. Thus, the investor accumulates wealth not only for the sake of consu...This paper describes a model in which a representative investor's preference depends on both the consumption history consumption and his wealth. Thus, the investor accumulates wealth not only for the sake of consumption history but also for wealth. We examine the implication for consumption, portfolio choice. We solve the consumption portfolio choice problem and provide the optimal policy. The optimal solution to the problem shows that the preference for wealth and consumption formation will affect the investor's optimal portfolio policy. For the purpose of further research, we also calculate the steady-state distribution of habit-consumption ratio.展开更多
基金Supported by the Key Project of Science and Technology Department of Henan Province(122102210060)
文摘This paper studies discrete investment portfolio model that the objective function is utility function. According to a hybrid branch-and-bound method based on Lagrangian relaxation and continuous relaxation, the paper analyzes the question using the real statistical data. The results indicate that discrete investment portfolio model really has its guidance in the actual investment.
基金National Natural Science Foundations of China(Nos.71271003,71171003)Programming Fund Project of the Humanities and Social Sciences Research of the Ministry of Education of China(No.12YJA790041)
文摘Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model. By introducing a set of constraint constants to measure uncertainty degree of the estimated expected return,it built the max-min model of multi-prior portfolio,and utilized the Lagrange method to obtain the closed-form solution of the model,which was compared with the mean-variance model and the minimum-variance model; then,an empirical study was done based on the monthly returns over the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index. Results showed,the weight of multi-prior portfolio was a weighted average of the weight of mean-variance portfolio and that of minimumvariance portfolio; the steady of multi-prior portfolio was strengthened compared with the mean-variance portfolio; the performance of multi-prior portfolio was greater than that of minimum-variance portfolio. The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.70518001. 70671064)
文摘In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.
文摘In this paper, a bivariate stochastic process with Poisson postulates has been considered to model the incomings, outgoings and mutual transfers of investments between and within the portfolios during an epoch of time “t”. Stochastic differential equations were obtained from the simple differential difference equations during the epoch of time “Δt”. The notion of bivariate linear birth, death and migration process has been utilized for measuring various statistical characteristics among the investments of Long and Short terms. All possible fluctuations in the investment flow have been considered to explore more meaningful assumptions with contemporary marketing environments. Mathematical relations for proposed statistical measures such as average sizes and variances of short term and long-term investments along with the correlation coefficient between them are derived after obtaining the related differential equations. Numerical illustrations were provided for better understanding of the developed models with practitioner’s point of view.
基金supported by the European Union’s H2020 Coordination and Support Actions CA19130 under Grant Agreement Period 2.
文摘Mean-variance portfolio optimization models are sensitive to uncertainty in risk-return estimates,which may result in poor out-of-sample performance.In particular,the estimates may suffer when the number of assets considered is high and the length of the return time series is not sufficiently long.This is precisely the case in the cryptocur-rency market,where there are hundreds of crypto assets that have been traded for a few years.We propose enhancing the mean-variance(MV)model with a pre-selection stage that uses a prototype-based clustering algorithm to reduce the number of crypto assets considered at each investment period.In the pre-selection stage,we run a prototype-based clustering algorithm where the assets are described by variables representing the profit-risk duality.The prototypes of the clustering partition are auto-matically examined and the one that best suits our risk-aversion preference is selected.We then run the MV portfolio optimization with the crypto assets of the selected cluster.The proposed approach is tested for a period of 17 months in the whole cryp-tocurrency market and two selections of the cryptocurrencies with the higher market capitalization(175 and 250 cryptos).We compare the results against three methods applied to the whole market:classic MV,risk parity,and hierarchical risk parity methods.We also compare our results with those from investing in the market index CCI30.The simulation results generally favor our proposal in terms of profit and risk-profit financial indicators.This result reaffirms the convenience of using machine learning methods to guide financial investments in complex and highly-volatile environments such as the cryptocurrency market.
基金supported by National Natural Science Foundation of China under Grant No.71172123Aviation Science Fund under Grant No.2012ZG53083+1 种基金Soft Science Foundation of Shaanxi Province under Grant No.2012KRM85the Funds of NPU for Humanities & Social Sciences and Management Revitalization under Grant No.RW201105
文摘To improve the enterprise resource utilization and shorten the cycle of the whole project portfolio, a scheduling model based on Design Structure Matrix (DSM) is built. By setting the project activity weight index system and calculating the activity weight for the project portfolio, the constraint relationship between project portfolio information and resource utilization, as the two dimensions of the DSM, are fully reflected in the sched- ule model to determine the order of these activities of project portfolio. A project portfolio example is given to il- lustrate the applicability and effectiveness of the schedule model.
文摘Aiming at constructing the multi-knapsack model of collaborative portfolio configurations in multi-strategy oriented, the hybrid evolutionary algorithm was designed based on greedy method, combining with the organization of the multiple strategical guidance and multi-knapsack model. Furthermore, the organizing resource utility and risk management of portfolio were considered. The experiments were conducted on three main technological markets which contain communication, transportation and industry. The results demonstrated that the proposed model and algorithm were feasible and reliable.
基金supported by the National Natural Science Foundation of China (7190121471690233)。
文摘The hesitant fuzzy set(HFS) is an important tool to deal with uncertain and vague information.In equipment system portfolio selection, the index attribute of the equipment system may not be expressed by precise data;it is usually described by qualitative information and expressed as multiple possible values.We propose a method of equipment system portfolio selection under hesitant fuzzy environment.The hesitant fuzzy element(HFE) is used to describe the index and attribute values of the equipment system.The hesitation degree of HFEs measures the uncertainty of the criterion data of the equipment system.The hesitant fuzzy grey relational analysis(GRA) method is used to evaluate the score of the equipment system, and the improved HFE distance measure is used to fully consider the influence of hesitation degree on the grey correlation degree.Based on the score and hesitation degree of the equipment system,two portfolio selection models of the equipment system and an equipment system portfolio selection case is given to illustrate the application process and effectiveness of the method.
文摘This paper describes a model in which a representative investor's preference depends on both the consumption history consumption and his wealth. Thus, the investor accumulates wealth not only for the sake of consumption history but also for wealth. We examine the implication for consumption, portfolio choice. We solve the consumption portfolio choice problem and provide the optimal policy. The optimal solution to the problem shows that the preference for wealth and consumption formation will affect the investor's optimal portfolio policy. For the purpose of further research, we also calculate the steady-state distribution of habit-consumption ratio.