Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov...Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.展开更多
Poschl-Teller double-ring-shaped Coulomb (PTDRSC) potential, the Coulomb potential surrounded by PSschl- Teller and double-ring-shaped inversed square potential, is put forward. In spherical polar coordinates, PTDRS...Poschl-Teller double-ring-shaped Coulomb (PTDRSC) potential, the Coulomb potential surrounded by PSschl- Teller and double-ring-shaped inversed square potential, is put forward. In spherical polar coordinates, PTDRSC potential has supersymmetry and shape invariance in φ,θ and τ coordinates. By using the method of supersymmetry and shape invariance, exact bound state solutions of Schr6dinger equation with PTDRSC potential are presented. The normalized φ,θ angular wave function expressed in terms of Jacobi polynomials and the normalized radial wave function expressed in terms of Laguerre polynomials are presented. Energy spectrum equations are obtained. Wave function and energy spectrum equations of the system are related to three quantum numbers and parameters of PTDRSC potential. The solutions of wave functions and corresponding eigenvalues are only suitable for the PTDRSC potential.展开更多
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper...Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.展开更多
We show that supersymmetry is a simple but powerful tool to exactly solve quantum mechanics problems. Here, the supersymmetric approach is used to analyse a quantum system with periodic Poschl-Teller potential, and to...We show that supersymmetry is a simple but powerful tool to exactly solve quantum mechanics problems. Here, the supersymmetric approach is used to analyse a quantum system with periodic Poschl-Teller potential, and to find out the exact energy spectra and the corresponding band structure.展开更多
文摘Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.
基金Project supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (Grant No. 05KJD140252)the Natural Science Foundation of Jiangsu Province of China (Grant No. KB2008199)
文摘Poschl-Teller double-ring-shaped Coulomb (PTDRSC) potential, the Coulomb potential surrounded by PSschl- Teller and double-ring-shaped inversed square potential, is put forward. In spherical polar coordinates, PTDRSC potential has supersymmetry and shape invariance in φ,θ and τ coordinates. By using the method of supersymmetry and shape invariance, exact bound state solutions of Schr6dinger equation with PTDRSC potential are presented. The normalized φ,θ angular wave function expressed in terms of Jacobi polynomials and the normalized radial wave function expressed in terms of Laguerre polynomials are presented. Energy spectrum equations are obtained. Wave function and energy spectrum equations of the system are related to three quantum numbers and parameters of PTDRSC potential. The solutions of wave functions and corresponding eigenvalues are only suitable for the PTDRSC potential.
文摘Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.
文摘We show that supersymmetry is a simple but powerful tool to exactly solve quantum mechanics problems. Here, the supersymmetric approach is used to analyse a quantum system with periodic Poschl-Teller potential, and to find out the exact energy spectra and the corresponding band structure.