For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional...For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional guide on de- signing control law for underactuated attitude control sys- tem. Firstly, attitude dynamic model was established for an underactuated spacecraft, and attitude motion was described using the special orthogonal group (SO (3)). Secondly, Liou- ville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving. Furthermore, according to Poincar6's re- currence theorem, we draw conclusions that this drift field is weakly positively poisson stable (WPPS). Thirdly, the suffi- cient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC). Finally, the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.展开更多
A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backsteppin...A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backstepping control is used to design the position controller for the SRM. The accuracy of position tracking of the SRM can be enhanced with speed assignment. A disturbance observer is further designed to enhance the estimation accuracy of the unknown load torque. Simulation results certify that the design scheme is right and effective.展开更多
Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-tempo...Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-temporal variability of ionosphere is made up of two major components that can be listed as spatio-temporal trends and secondary variabilities that are due to disturbances in the geomagnetic field, gravitational waves and coupling of seismic activities into the upper atmosphere and ionosphere. Some of these second order variabilities generate wave-like oscillations in the ionosphere which propagate at a certain frequency, duration and velocity. These oscillations cause major problems for navigation and guidance systems that utilize GNSS (Global Navigation Satellite Systems). In this study, the frequency and duration of wave-like oscillations are determined using a DFT (Discrete Fourier Transform) based algo- rithm over the STEC (slant total electron content) values estimated from single GPS (Global Positioning System) station. The performance of the developed method, namely IONOLAB-FFT, is first determined using synthetic oscillations with known frequencies and durations. Then, IONOLAB-FFr is applied to STEC data from various midlatitude GPS stations for detection of frequency and duration of both medium and large scale TIDs (traveling ionospheric disturbances). It is observed that IONOLAB-FFr can estimate TIDs with more than 80% accuracy for the following cases: frequencies from 0.6 mHz to 2.4 mHz and durations longer than 10 min; frequencies from 0.15 mHz to 0.6 mHz and durations longer than 50 min; fre- quencies higher than 0.29 mHz and durations longer than 50 rain.展开更多
Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear paramete...Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear parameters, viz. the flow gain coefficient of servo valve and total factors of flow-pressure coefficient. Taking trace error of torque control system to zero as control object, this article designs the adaptive nonlinear optimal compensation control strategy, which regards torque control output of closed-loop controller converging to zero as the control target, to optimize torque tracking performance. Electro-hydraulic load simulator is a typical case of the torque system which is strongly coupled with a hydraulic positioning system. This article firstly builds and analyzes the mathematical models of hydraulic torque and positioning system, then designs an adaptive nonlinear optimal compensation controller, proves the validity of parameters estimation, and shows the comparison data among three control structures with various typical operating conditions, including proportion-integral-derivative (PID) controller only, the velocity synchronizing controller plus P1D controller and the proposed adaptive nonlinear optimal compensation controller plus PID controller. Experimental results show that systems' nonlinear parameters are estimated exactly using the proposed method, and the trace accuracy of the torque system is greatly enhanced by adaptive nonlinear optimal compensation control, and the torque servo system capability against sudden disturbance can be greatly improved.展开更多
基金supported by National Natural Science Foundation of China (10902003)
文摘For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional guide on de- signing control law for underactuated attitude control sys- tem. Firstly, attitude dynamic model was established for an underactuated spacecraft, and attitude motion was described using the special orthogonal group (SO (3)). Secondly, Liou- ville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving. Furthermore, according to Poincar6's re- currence theorem, we draw conclusions that this drift field is weakly positively poisson stable (WPPS). Thirdly, the suffi- cient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC). Finally, the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.
基金supported by the National Natural Science Foundation of China(61273086)
文摘A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment. Adaptive backstepping control is used to design the position controller for the SRM. The accuracy of position tracking of the SRM can be enhanced with speed assignment. A disturbance observer is further designed to enhance the estimation accuracy of the unknown load torque. Simulation results certify that the design scheme is right and effective.
文摘Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-temporal variability of ionosphere is made up of two major components that can be listed as spatio-temporal trends and secondary variabilities that are due to disturbances in the geomagnetic field, gravitational waves and coupling of seismic activities into the upper atmosphere and ionosphere. Some of these second order variabilities generate wave-like oscillations in the ionosphere which propagate at a certain frequency, duration and velocity. These oscillations cause major problems for navigation and guidance systems that utilize GNSS (Global Navigation Satellite Systems). In this study, the frequency and duration of wave-like oscillations are determined using a DFT (Discrete Fourier Transform) based algo- rithm over the STEC (slant total electron content) values estimated from single GPS (Global Positioning System) station. The performance of the developed method, namely IONOLAB-FFT, is first determined using synthetic oscillations with known frequencies and durations. Then, IONOLAB-FFr is applied to STEC data from various midlatitude GPS stations for detection of frequency and duration of both medium and large scale TIDs (traveling ionospheric disturbances). It is observed that IONOLAB-FFr can estimate TIDs with more than 80% accuracy for the following cases: frequencies from 0.6 mHz to 2.4 mHz and durations longer than 10 min; frequencies from 0.15 mHz to 0.6 mHz and durations longer than 50 min; fre- quencies higher than 0.29 mHz and durations longer than 50 rain.
基金National Natural Science Foundation of China (50825502)
文摘Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear parameters, viz. the flow gain coefficient of servo valve and total factors of flow-pressure coefficient. Taking trace error of torque control system to zero as control object, this article designs the adaptive nonlinear optimal compensation control strategy, which regards torque control output of closed-loop controller converging to zero as the control target, to optimize torque tracking performance. Electro-hydraulic load simulator is a typical case of the torque system which is strongly coupled with a hydraulic positioning system. This article firstly builds and analyzes the mathematical models of hydraulic torque and positioning system, then designs an adaptive nonlinear optimal compensation controller, proves the validity of parameters estimation, and shows the comparison data among three control structures with various typical operating conditions, including proportion-integral-derivative (PID) controller only, the velocity synchronizing controller plus P1D controller and the proposed adaptive nonlinear optimal compensation controller plus PID controller. Experimental results show that systems' nonlinear parameters are estimated exactly using the proposed method, and the trace accuracy of the torque system is greatly enhanced by adaptive nonlinear optimal compensation control, and the torque servo system capability against sudden disturbance can be greatly improved.