By an elementary proof, we use a result of Conway and Dudziak to show that if A is a hyponormal operator with spectral radius r(A) such that its spectrum is the closed disc {z:|z| ≤ r(A)} then A is reflexive. ...By an elementary proof, we use a result of Conway and Dudziak to show that if A is a hyponormal operator with spectral radius r(A) such that its spectrum is the closed disc {z:|z| ≤ r(A)} then A is reflexive. Using this result, we give a simple proof of a result of Bercovici, Foias, and Pearcy on reflexivity of shift operators. Also, it is shown that every power of an invertible bilateral weighted shift is reflexive.展开更多
Let {an}∞n=0be a weight sequence and let W denote the associated unilateral weighted shift on H. In this paper, we consider the connection between the M-hyponormal and hyponormalizable weighted shift operator. Main r...Let {an}∞n=0be a weight sequence and let W denote the associated unilateral weighted shift on H. In this paper, we consider the connection between the M-hyponormal and hyponormalizable weighted shift operator. Main results are Theorems 4.1 and Theorems4.2. Theorem 4.1 gives the sufficient condition that a weighted shifts M-hyponormal operator is hyponormalizable. Theorem 4.2 gives the sufficient condition that a hyponormalizable weighted shift operator is M-hyponormal. Finally, invariant subspaces of such operators are discussed.展开更多
Extending previous results of Grosse-Erdmann and Peris we obtain a characterization of chaotic unilateral weighted backward shifts on sequentially complete topological sequence spaces in which the canonical unit vecto...Extending previous results of Grosse-Erdmann and Peris we obtain a characterization of chaotic unilateral weighted backward shifts on sequentially complete topological sequence spaces in which the canonical unit vectors(e_(n))_(n=1)^(∞) form an unconditional basis.展开更多
A unilateral weighted shift A is said to be simple if its weight sequence {α_n} satisfies ▽~3(α_n^2)≠0for all n≥2.We prove that if A and B are two simple unilateral weighted shifts,then AI+IB is reducible if and ...A unilateral weighted shift A is said to be simple if its weight sequence {α_n} satisfies ▽~3(α_n^2)≠0for all n≥2.We prove that if A and B are two simple unilateral weighted shifts,then AI+IB is reducible if and only if A and B are unitarily equivalent.We also study the reducing subspaces of A^kI+IB^l and give some examples.As an application,we study the reducing subspaces of multiplication operators Mzk+αωl on function spaces.展开更多
基金supported by a grant (No.86-GR-SC-27) from Shiraz University Research Council
文摘By an elementary proof, we use a result of Conway and Dudziak to show that if A is a hyponormal operator with spectral radius r(A) such that its spectrum is the closed disc {z:|z| ≤ r(A)} then A is reflexive. Using this result, we give a simple proof of a result of Bercovici, Foias, and Pearcy on reflexivity of shift operators. Also, it is shown that every power of an invertible bilateral weighted shift is reflexive.
基金Supported by the NNSF of China(11126286,11201095)Supported by the Research Fund of Heilongjiang Provincial Education Department(12541618)
文摘Let {an}∞n=0be a weight sequence and let W denote the associated unilateral weighted shift on H. In this paper, we consider the connection between the M-hyponormal and hyponormalizable weighted shift operator. Main results are Theorems 4.1 and Theorems4.2. Theorem 4.1 gives the sufficient condition that a weighted shifts M-hyponormal operator is hyponormalizable. Theorem 4.2 gives the sufficient condition that a hyponormalizable weighted shift operator is M-hyponormal. Finally, invariant subspaces of such operators are discussed.
基金Supported by Research Program of Science at Universities of Inner Mongolia Autonomous Region(Grant No.NJZY22328)。
文摘Extending previous results of Grosse-Erdmann and Peris we obtain a characterization of chaotic unilateral weighted backward shifts on sequentially complete topological sequence spaces in which the canonical unit vectors(e_(n))_(n=1)^(∞) form an unconditional basis.
基金supported by National Natural Science Foundation of China(Grant Nos.11371096 and 11471113)
文摘A unilateral weighted shift A is said to be simple if its weight sequence {α_n} satisfies ▽~3(α_n^2)≠0for all n≥2.We prove that if A and B are two simple unilateral weighted shifts,then AI+IB is reducible if and only if A and B are unitarily equivalent.We also study the reducing subspaces of A^kI+IB^l and give some examples.As an application,we study the reducing subspaces of multiplication operators Mzk+αωl on function spaces.